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The structural matrices

K = k


+2 −1 0 0 0
−1 +2 −1 0 0
0 −1 +2 −1 0
0 0 −1 +2 −1
0 0 0 −1 +1

M = m


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The Ritz base vectors and the reduced matrices,

Φ =


0.2 −0.5
0.4 −1.0
0.6 −0.5
0.8 +0.0
1.0 1.0


K̄ = k

[
0.2 0.2
0.2 2.0

]
M̄ = m

[
2.2 0.2
0.2 2.5

]

Red. eigenproblem (ρ = ω2m/k):
[

2 − 22ρ 2 − 2ρ
2 − 2ρ 20 − 25ρ

]{
z1
z2

}
=

{
0
0

}
The roots are ρ1 = 0.0824, ρ2 = 0.800, the frequencies are
ω1 = 0.287

√
k/m [ = 0.285], ω2 = 0.850

√
k/m [ = 0.831], while the k/m

normalized exact eigenvalues are [0.08101405, 0.69027853].
The first eigenvalue is estimated with good approximation.
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Rayleigh-Ritz Example

The Ritz coordinates eigenvector matrix is Z =

[
1.329 0.03170

−0.1360 1.240

]
.

The RR eigenvector matrix, Φ and the exact one, Ψ:

Φ =


+0.3338 −0.6135
+0.6676 −1.2270
+0.8654 −0.6008
+1.0632 +0.0254
+1.1932 +1.2713

 , Ψ =


+0.3338 −0.8398
+0.6405 −1.0999
+0.8954 −0.6008
+1.0779 +0.3131
+1.1932 +1.0108

 .

The accuracy of the estimates for the 1st mode is very good, on the contrary the
2nd mode estimates are in the order of a few percents.

It may be interesting to use Φ̂ = K−1MΦ as a new Ritz base to get a new
estimate of the Ritz and of the structural eigenpairs.
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Introduction to Subspace Iteration

Rayleigh-Ritz gives good estimates for p ≈M/2 modes, due also to
the arbitrariness in the choice of the Ritz reduced base Φ.
Having to solve a M = 2p order problem to find p eigenvalues is
very costly, as the operation count is ∝ O(M3).

Choosing better Ritz base vectors, we can use less vectors and solve
a smaller (much smaller in terms of operations count) eigenvalue
problem.
If one thinks of it, with a M = 1 base we can always compute,
within arbitrary accuracy, one eigenvector using the Matrix Iteration
procedure, isn’t it?
And the trick is to change the base at every iteration...
The Subspace Iteration procedure is a variant of the Matrix Iteration
procedure, where we apply the same idea, to use the response to
inertial loading in the next step, not to a single vector but to a set of
different vectors at once.
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Statement of the procedure

The first M eigenvalue equations can be written in matrix algebra, in
terms of an N×M matrix of eigenvectors Φ and an M×M
diagonal matrix Λ that collects the eigenvalues

K
N×N

Φ
N×M

= M
N×N

Φ
N×M

Λ
M×M

Using again the hat notation for the unnormalized iterate, from the
previous equation we can write

KΦ̂1 =MΦ0

where Φ0 is the matrix, N×M, of the zero order trial vectors, and
Φ̂1 is the matrix of the non-normalized first order trial vectors.
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Orthonormalization

To proceed with iterations,
1. the trial vectors in Φ̂n+1 must be orthogonalized, so that each

trial vector converges to a different eigenvector instead of
collapsing to the first eigenvector,

2. all the trial vectors must be normalized, so that the ratio
between the normalized vectors and the unnormalized iterated
vectors converges to the corresponding eigenvalue.

These operations can be performed in different ways (e.g.,
ortho-normalization by Gram-Schmidt process).
Another possibility to do both tasks at once is to solve a
Rayleigh-Ritz eigenvalue problem, defined in the Ritz base
constituted by the vectors in Φ̂n+1.
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Associated Eigenvalue Problem

Developing the procedure for n = 0, with the generalized matrices

K?
1 = Φ̂1

TKΦ̂1

and
M?

1 = Φ̂1
TMΦ̂1

the Rayleigh-Ritz eigenvalue problem associated with the orthonormalisation of
Φ̂1 is

K?
1Ẑ1 =M

?
1Ẑ1Ω

2
1.

After solving for the Ritz coordinates mode shapes, Ẑ1 and the frequencies Ω2
1,

using any suitable procedure, it is usually convenient to normalize the shapes, so
that Ẑ1

TM?
1Ẑ1 = I. The ortho-normalized set of trial vectors at the end of the

iteration is then written as
Φ1 = Φ̂1Ẑ1.

The entire process can be repeated for n = 1, then n = 2, n = . . . until the
eigenvalues converge within a prescribed tolerance.
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Convergence

In principle, the procedure will converge to all the M lower
eigenvalues and eigenvectors of the structural problem, but it was
found that the subspace iteration method converges faster to the
lower p eigenpairs, those required for dynamic analysis, if there is
some additional trial vector; on the other hand, too many additional
trial vectors slow down the computation without ulterior benefits.

Experience has shown that the optimal total number M of trial
vectors is the minimum of 2p and p+ 8.
The subspace iteration method makes it possible to compute
simultaneosly a set of eigenpairs within any required level of
approximation, and is the preferred method to compute the
eigenpairs of a complex dynamic system.
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Standard Form

In algebra textbooks, the eigenproblem is usually stated as

Ay = λy

and all the relevant algorithms to actually compute the eigenthings (Jacobi
method, QR method, etc) are referred to the above statement of the problem.
Our problem is, instead, formulated as

Kx = λMx.

Of course one can premultiply both members by M−1,

MKx = λ x,

but this procedure doesn’t preserve the symmetry of the problem, leading to a
more onerous solution.
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Standard Form

If we want to preserve the symmetry of the structural matrices, we
may proceed as follows.
Any symmetric, definite positive matrix B can be subjected to a
unique Choleski Decomposition (CD), B = LLT where L is a lower
triangular matrix. Applying CD to M, the eigenvector equation is,

Kx = K (LT )−1LT︸ ︷︷ ︸
I

x = λLLT︸︷︷︸
M

x.

Premultiplying by L−1, with y = LTx

L−1K(LT )−1︸ ︷︷ ︸
A

LTx︸︷︷︸
y

= λL−1L︸ ︷︷ ︸
I

LTx︸︷︷︸
y

→ Ay = λy.

It’s worth to mention that, for a lumped mass matrix, L is a diagonal
matrix, with

Lii =
√
mii,
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How many eigenvectors?

To understand how many eigenvectors we have to use in a modal
analysis, we must consider two factors, the loading shape and the
excitation frequency.
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Introduction

In the following, we’ll consider only external loadings whose
dependance on time and space can be separated, as in

p(x, t) = r f(t),

so that we can regard separately the two aspects of the problem.
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Introduction

It is worth noting that earthquake loadings are precisely of this type:

p(x, t) =Mr̃ üg

where the vector r̃ is used to choose the structural dof’s that are
excited by the ground motion component under consideration.

r̃ is an incidence vector, often simply a vector of ones and zeroes
where the ones stay for the inertial forces that are excited by a
specific component of the earthquake ground acceleration.

Multiplication of M and division of üg by g, acceleration of gravity,
serves to show a dimensional load vector multiplied by an
adimensional function.

p(x, t) = gMr̃
üg(t)

g

= rgfg(t)
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serves to show a dimensional load vector multiplied by an
adimensional function.

p(x, t) = gMr̃
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Modal partecipation factor

Under the assumption of separability, we can write the i-th modal
equation of motion as

q̈i + 2ζiωiq̇i +ω
2
iqi =

{
ψT

i r

Mi
f(t)

gψT
iMr̂

Mi
fg(t)

= Γif(t)

with the modal mass Mi = ψ
T
iMψi.

It is apparent that the modal response amplitude depends
I on the characteristics of the time dependency of loading, f(t),
I on the so called modal partecipation factor Γi,

Γi = ψ
T
i r/Mi

= gψT
iMr̂/Mi = ψ

T
i r

g/Mi

Note that both the definitions of modal partecipation give it the
dimensions of an acceleration.
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Modal partecipation factor

Under the assumption of separability, we can write the i-th modal
equation of motion as

q̈i + 2ζiωiq̇i +ω
2
iqi =

{
ψT

i r

Mi
f(t)

gψT
iMr̂

Mi
fg(t)

= Γif(t)

with the modal mass Mi = ψ
T
iMψi.

It is apparent that the modal response amplitude depends
I on the characteristics of the time dependency of loading, f(t),
I on the so called modal partecipation factor Γi,

Γi = ψ
T
i r/Mi

= gψT
iMr̂/Mi = ψ

T
i r

g/Mi

Note that both the definitions of modal partecipation give it the
dimensions of an acceleration.
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Partecipation Factor Amplitudes

For a given loading r the modal partecipation factor Γi is proportional to the
work done by the modal displacement qiψ

T
i for the given loading r:

I if the mode shape and the loading shape are approximately equal (equal
signs, component by component), the work (dot product) is maximized,

I if the mode shape is significantly different from the loading (different
signs), there is some amount of cancellation and the value of the Γ ’s will
be reduced.
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Example

Consider a shear type building, with mass distribution approximately
constant over its height:

r̂ = {1, 1, . . . , 1}T and gMr̂ ≈ mg{1, 1, . . . , 1}T .

an external loading and the first 3 eigenvectors as sketched below:

gMr̂ r ψ1 ψ2 ψ3
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Example, cont.

gMr̂ r ψ1 ψ2 ψ3

For EQ loading, Γ1 is relatively large for the first mode, as loading
components and displacements have the same sign, with respect to
other Γi’s, where the oscillating nature of the higher eigenvectors will
lead to increasing cancellation.
On the other hand, consider the external loading, whose peculiar
shape is similar to the 3rd mode. Γ3 will be more relevant than Γi’s
for lower or higher modes.
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Modal Loads Expansion

We define the modal load contribution as

ri =Mψiai

and express the load vector as a linear combination of the modal contributions

r =
∑
i

Mψiai =
∑
i

ri.

If we premultiply by ψT
j the above equation, we see how we can compute the

coefficient aiK
ψT

j r = ψ
T
j

∑
i

Mψiai = δijMiai
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Modal Loads Expansion

1. A modal load component works only for the displacements associated with
the corresponding eigenvector,

ψT
j ri = aiψ

T
jMψi = δijaiMi.

2. Comparing ψT
j r = ψ

T
j

∑
iMψiai = δijMiai with the definition of

Γi = ψ
T
i r/Mi, we conclude that ai ≡ Γi and finally write

ri = ΓiMψi,

it is possible to collect all the modal load contributions in a matrix: with
Γ = diag Γi we have

R =MΨΓ.
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Equivalent Static Forces

For mode i, the equation of motion is

q̈i + 2ζiωiq̇i +ω
2
iqi = Γif(t)

with qi = ΓiDi, we can write, to single out the dependency on the
modulating function,

D̈i + 2ζiωiḊi +ω
2
iDi = f(t)

The modal contribution to displacement is

xi = ΓiψiDi(t)

and the modal contribution to elastic forces fi = Kxi can be written
(being Kψi = ω

2
iMψi) as

fi = Kxi = ΓiKψiDi = ω
2
i(ΓiMψi)Di = riω

2
iDi
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Equivalent Static Forces

For mode i, the equation of motion is

q̈i + 2ζiωiq̇i +ω
2
iqi = Γif(t)

with qi = ΓiDi, we can write, to single out the dependency on the
modulating function,

D̈i + 2ζiωiḊi +ω
2
iDi = f(t)

The modal contribution to displacement is

xi = ΓiψiDi(t)

and the modal contribution to elastic forces fi = Kxi can be written
(being Kψi = ω

2
iMψi) as

fi = Kxi = ΓiKψiDi = ω
2
i(ΓiMψi)Di = riω

2
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Equivalent Static Response

The response can be determined by superposition of the effects of these
pseudo-static forces fi = riω2

iDi(t).
If a required response quantity (be it a nodal displacement, a bending moment in
a beam, the total shear force in a building storey, etc etc) is indicated by s(t),
we can compute with a static calculation (usually using the FEM model
underlying the dynamic analysis) the modal static contribution ssti and write

s(t) =
∑

ssti (ω
2
iDi(t)) =

∑
si(t),

where the modal contribution to response si(t) is given by

1. static analysis using ri as the static load vector,

2. dynamic amplification using the factor ω2
iDi(t).

This formulation is particularly apt to our discussion of different contributions to
response components.
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Equivalent Static Response

The response can be determined by superposition of the effects of these
pseudo-static forces fi = riω2

iDi(t).
If a required response quantity (be it a nodal displacement, a bending moment in
a beam, the total shear force in a building storey, etc etc) is indicated by s(t),
we can compute with a static calculation (usually using the FEM model
underlying the dynamic analysis) the modal static contribution ssti and write

s(t) =
∑

ssti (ω
2
iDi(t)) =

∑
si(t),

where the modal contribution to response si(t) is given by

1. static analysis using ri as the static load vector,

2. dynamic amplification using the factor ω2
iDi(t).

This formulation is particularly apt to our discussion of different contributions to
response components.
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Modal Contribution Factors

Say that the static response due to r is denoted by sst, then si(t),
the modal contribution to response s(t), can be written

si(t) = s
st
i ω

2
iDi(t) = s

st s
st
i

sst
ω2

iDi(t) = s̄is
stω2

iDi(t).

We have introduced s̄i =
ssti
sst , the modal contribution factor, the

ratio of the modal static contribution to the total static response.
The s̄i are dimensionless, are indipendent on the eigenvector scaling
procedure and their sum is unity,

∑
s̄i = 1.
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Maximum Response

Denote by Di0 the maximum absolute value (or peak) of the pseudo
displacement time history,

Di0 = max
t

{|Di(t)|}.

It will be
si0 = s̄is

stω2
iDi0

The dynamic response factor for mode i, Rdi is defined by

Rdi =
Di0

Dst
i0

where Dst
i0 is the peak value of the static pseudo displacement

Dst
i =

f(t)

ω2
i

,

Dst
i0 =

f0

ω2
i
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Maximum Response

With f0 = max{|f(t)|} the peak pseudo displacement is

Di0 = Rdif0/ω
2
i

and the peak of the modal contribution is

si0(t) = s̄is
stω2

iDi0(t) = f0s
st s̄iRdi

The first two terms are independent of the mode, the last are
independent from each other and their product is the factor that
influences the modal contributions.
Note that this product has the sign of s̄i, as the dynamic response
factor is always positive.
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Maximum Response

With f0 = max{|f(t)|} the peak pseudo displacement is

Di0 = Rdif0/ω
2
i

and the peak of the modal contribution is

si0(t) = s̄is
stω2

iDi0(t) = f0s
st s̄iRdi

The first two terms are independent of the mode, the last are
independent from each other and their product is the factor that
influences the modal contributions.
Note that this product has the sign of s̄i, as the dynamic response
factor is always positive.



MCF’s example
The following table (from Chopra, 2nd ed.) displays the s̄i and their partial sums
for a shear-type, 5 floors building where all the storey masses are equal and all
the storey stiffnesses are equal too.
The response quantities chosen are x̄5n, the MCF’s to the top displacement and
V̄n, the MCF ’s to the base shear, for two different load shapes.

r = {0, 0, 0, 0, 1}T r = {0, 0, 0,−1, 2}T

Top Displacement Base Shear Top Displacement Base Shear

n or J x̄5n
∑J

x̄5i V̄n

∑J
V̄i x̄5n

∑J
x̄5i V̄n

∑J
V̄i

1 0.880 0.880 1.252 1.252 0.792 0.792 1.353 1.353
2 0.087 0.967 -0.362 0.890 0.123 0.915 -0.612 0.741
3 0.024 0.991 0.159 1.048 0.055 0.970 0.043 1.172
4 0.008 0.998 -0.063 0.985 0.024 0.994 -0.242 0.930
5 0.002 1.000 0.015 1.000 0.006 1.000 0.070 1.000

Note that
1. for any given r, the base shear is more influenced by higher modes, and
2. for any given reponse quantity, the second, skewed r gives greater modal

contributions for higher modes.
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Dynamic Response Ratios

Dynamic Response Ratios are the same that we have seen for SDOF systems.
Next page, for an undamped system, harmonically excited,

I solid line, the ratio of the modal elastic force FS,i = Kiqi sinωt to the
harmonic applied modal force, Pi sinωt, plotted against the frequency ratio
β = ω/ωi.
For β = 0 the ratio is 1, the applied load is fully balanced by the elastic
resistance.
For fixed excitation frequency, β→ 0 for high modal frequencies.

I dashed line,the ratio of the modal inertial force, FI,i = −β2FS,i to the load.

Note that for steady-state motion the sum of the elastic and inertial force ratios
is constant and equal to 1, as in

(FS,i + FI,i) sinωt = Pi sinωt.
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Dynamic Response Ratios are the same that we have seen for SDOF systems.
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I solid line, the ratio of the modal elastic force FS,i = Kiqi sinωt to the
harmonic applied modal force, Pi sinωt, plotted against the frequency ratio
β = ω/ωi.
For β = 0 the ratio is 1, the applied load is fully balanced by the elastic
resistance.
For fixed excitation frequency, β→ 0 for high modal frequencies.

I dashed line,the ratio of the modal inertial force, FI,i = −β2FS,i to the load.

Note that for steady-state motion the sum of the elastic and inertial force ratios
is constant and equal to 1, as in

(FS,i + FI,i) sinωt = Pi sinωt.
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I For a fixed excitation frequency and high modal frequencies the frequency
ratio β→ 0.

I For β→ 0 the response is quasi-static.
I Hence, for higher modes the response is pseudo-static.
I On the contrary, for excitation frequencies high enough the lower modes

respond with purely inertial forces.
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Static Correction

The preceding discussion indicates that higher modes contributions
to the response could be approximated with the static response,
leading to a Static Correction of the dynamic response

For a system where qi(t) ≈
pi(t)

Ki
for i > ndy,

ndy being the number of dynamically responding modes,
we can write

x(t) ≈ xdy(t) + xst(t) =
ndy∑
1

ψiqi(t) +

N∑
ndy+1

ψi
pi(t)

Ki

where the response for each of the first ndy modes can be computed
as usual.
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Static Modal Components

The static modal displacement component xj, j > ndy can be written

xj(t) = ψjqj(t) ≈
ψjψ

T
j

Kj
p(t) = Fjp(t)

The modal flexibility matrix is defined by

Fj =
ψjψ

T
j

Kj

and is used to compute the j-th mode static deflections due to the
applied load vector.
The total displacements, the dynamic contributions and the static
correction, for p(t) = r f(t), are then

x ≈
ndy∑
1

ψjqj(t) + f(t)

N∑
ndy+1

Fjr.
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Alternative Formulation

Our last formula for static correction is

x ≈
ndy∑
1

ψjqj(t) + f(t)

N∑
ndy+1

Fjr.

To use the above formula all mode shapes, all modal stiffnesses and all modal
flexibility matrices must be computed, undermining the efficiency of the
procedure.
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Alternative Formulation

This problem can be obviated computing the total static displacements,
xtotalst = K−1p(t), and subtracting the static displacements due to the first ndy
modes...

N∑
ndy

Fjrf(t) = K
−1rf(t) −

ndy∑
1

Fjrf(t) = f(t)

K−1 −

ndy∑
1

Fj

 r,
so that the corrected total displacements have the expression

x ≈
ndy∑
1

ψiqi(t) + f(t)

K−1 −

ndy∑
1

Fi

 r,
The constant term (a generalized displacement vector) following
f(t) can be computed with the information in our posses at the
moment we begin the integration of the modal equations of
motion.
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Effectiveness of Static Correction

In these circumstances, few modes with static correction give results
comparable to the results obtained using much more modes in a
straightforward modal displacement superposition analysis.

I An high number of modes is required to account for the spatial
distribution of the loading but only a few lower modes are
subjected to significant dynamic amplification.

I Refined stress analysis is required even if the dynamic response
involves only a few lower modes.
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In these circumstances, few modes with static correction give results
comparable to the results obtained using much more modes in a
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I An high number of modes is required to account for the spatial
distribution of the loading but only a few lower modes are
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Effectiveness of Static Correction

In these circumstances, few modes with static correction give results
comparable to the results obtained using much more modes in a
straightforward modal displacement superposition analysis.

I An high number of modes is required to account for the spatial
distribution of the loading but only a few lower modes are
subjected to significant dynamic amplification.

I Refined stress analysis is required even if the dynamic response
involves only a few lower modes.
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