Derived Ritz Vectors, Numerical Integration	
Multiple Support Excitation	DRV, Num Integration, MSE Giacomo Boffi
Giacomo Boffi	Derived Ritz Vectors Numerical Integration Multiple Support Excitation
Dipartimento di Ingegneria Civile Ambientale e Territoriale	
Politecnico di Milano	
April 20, 2016	

Derived Ritz Vectors	$\begin{aligned} & \text { DRV, } \\ & \text { Num Integration, } \\ & \text { MSE } \end{aligned}$
Derived Ritz Vectors Giacomo Boffi	
Derived Ritz Vectors	Derived Ritz Vectors
The procedure by example	Introduction
The Tridiagonal Matrix	Derived Ritz
Solution Strategies	The procedure by
Re-orthogonalization	(the Tridiagonal
Required Number of DRV	Solution Strategies Re
Example	
Numerical Integration	$\substack{\text { Required } \\ \text { Oeformple } \\ \text { Exam }}$
Introduction	Numerical
Constant Acceleration	Integration
Wilson's Theta Method	$\pm \begin{gathered}\text { Mutitite Support } \\ \text { Excitation }\end{gathered}$
Multiple Support Excitation excia	
Equation of motion	
EOM Example	
Response Analysis	
Response Analysis Example	

Introduction

DRV,
Num Integration, MSE

Giacomo Boffi
The dynamic analysis of a linear structure can be described as a three steps procedure

1. FEM model discretization of the structure,
2. solution of the eigenproblem,
3. integration of the uncoupled equations of motion.

The eigenproblem solution is often obtained by some variation of the Rayleigh-Ritz procedure, e.g. subspace iteration that is efficient and accurate.
A proper choice of the initial Ritz base Φ_{0} is key to efficiency. An effective reduced base is given by the so called Derived Ritz vectors (or Lanczos vectors)
DRV not only form a suitable base for subspace iteration, but can be directly used in a step-by-step procedure.

Lanczos Vectors

The Lanczos vectors are obtained in a manner that is similar to matrix iteration and are constructed in such a way that each one is orthogonal to all the others.
Usually each new vector must be orthogonalised with respect to all the other vectors, lots of work...

For the Lanczos vectors sequence, orthogonalising a new vector with respect to the two preceeding ones ensures that the new vector is orthogonal to all the previous vectors.

Computing the $1^{\text {st }}$ DRV

Our initial assumption is that the load vector can be decoupled, $\mathbf{p}(\mathrm{x}, \mathrm{t})=\mathbf{r}_{0} \mathrm{f}(\mathrm{t})$

1. Obtain the deflected shape ℓ_{1} due to
$K \ell_{1}=\mathbf{r}$ the application of the force shape vector (ℓ 's are displacements).
2. Compute the normalisation factor with respect to the mass matrix (β is a displacement).
3. Obtain the first derived Ritz vector normalising ℓ_{1} such that $\boldsymbol{\phi}_{1}^{\top} \mathbf{M} \boldsymbol{\phi}=1$ unit of mass (ϕ 's are adimensional).

Computing the $2^{\text {nd }}$ DRV

A new load vector is computed, $\mathbf{r}_{1}=1 M \phi_{1}$, where 1 is a unit acceleration.

1. Obtain the deflected shape ℓ_{2} due to

$$
\mathbf{K} \ell_{2}=\mathbf{r}_{1}
$$ the application of the new load vector.

2. Purify the displacements ℓ_{2} (α_{1} is dimensionally a displacement).
3. Compute the normalisation factor.

$$
\begin{aligned}
& \alpha_{1}=\frac{\phi_{1}^{\top} \mathcal{M} \ell_{2}}{1 \text { unit mass }} \\
& \hat{\ell}_{2}=\ell_{2}-\alpha_{1} \phi_{1}
\end{aligned}
$$

$$
\beta_{2}^{2}=\frac{\hat{\mathbb{Q}}_{2}^{\top} M \hat{\mathcal{R}}_{2}}{1 \text { unit mass }}
$$

4. Obtain the second derived Ritz vector normalising $\hat{\ell}_{2}$.

Computing the $3^{\text {rd }}$ DRV

The new load vector is $\mathbf{r}_{2}=1 M \boldsymbol{\phi}_{2}$, 1 being a unit acceleration.

1. Obtain the deflected shape ℓ_{3}.
2. Purify the displacements ℓ_{3} where
$\alpha_{2}=\frac{\boldsymbol{\phi}_{2}^{\top} M \ell_{3}}{1 \text { unit mass }}, \quad \alpha_{1}=\frac{\boldsymbol{\phi}_{1}^{\top} M \ell_{3}}{1 \text { unit mass }}=\beta_{2}$
3. Compute the normalisation factor.
4. Obtain the third derived Ritz vector normalising $\hat{\ell}_{3}$.
$K \ell_{3}=r_{2}$
$\hat{\ell}_{3}=\ell_{3}-\alpha_{2} \Phi_{2}-$
β_{2} ф $_{1}$
$\beta_{3}^{2}=\frac{\hat{\mathfrak{l}}_{3}^{\top} M \hat{\ell}_{3}}{1 \text { unit mass }}$
$\boldsymbol{\Phi}_{3}=\frac{1}{\beta_{2}} \hat{\ell}_{3}$

We don't need to compute α_{1} to purify ℓ_{3}, because it's equal to β_{2}, i.e., the normalization factor applied in the previous (second) step.

Fourth Vector, etc

The new load vector is $r_{3}=1 M \phi_{3}, 1$ being a unit acceleration.

1. Obtain the deflected shape ℓ_{4}.
$K \ell_{4}=\mathbf{r}_{3}$
2. Purify the displacements ℓ_{4} where

$$
\begin{gathered}
\alpha_{3}=\frac{\phi_{3}^{\top} M \ell_{4}}{1 \text { unit mass }}, \quad \alpha_{2}=\frac{\phi_{2}^{\top} M \ell_{4}}{1 \text { unit mass }}=\beta_{3} \\
\alpha_{1}=\frac{\phi_{1}^{\top} M \ell_{4}}{1 \text { unit mass }}=0
\end{gathered}
$$

3. Compute the normalisation factor.

$$
\beta_{4}=\frac{\hat{\ell}_{4}^{\top} M \hat{\ell}_{4}}{1 \text { unit mass }}
$$

4. Obtain the fourth derived Ritz vector normalising $\hat{\ell}_{4}$.

$$
\phi_{4}=\frac{1}{\beta_{4}} \hat{\ell}_{4}
$$

The procedure used for the fourth $D R V$ can be used for all the subsequent ϕ_{i}, with $\alpha_{i-1}=\boldsymbol{\phi}_{i-1}^{\top} M \ell_{i}$ and $\alpha_{i-2} \equiv \beta_{i-1}$, while all the others purifying coefficents are equal to zero, $\alpha_{i-3}=\cdots=0$.

The Tridiagonal Matrix

Having computed $M<N D R V$ we can write for, e.g., $M=5$ that each un-normalised vector is equal to the displacements minus the purification terms

$$
\begin{aligned}
& \boldsymbol{\phi}_{2} \beta_{2}=\mathbf{K}^{-1} \boldsymbol{M} \boldsymbol{\phi}_{1}-\boldsymbol{\phi}_{1} \alpha_{1} \\
& \boldsymbol{\phi}_{3} \beta_{3}=\mathbf{K}^{-1} \boldsymbol{M} \boldsymbol{\phi}_{2}-\boldsymbol{\phi}_{2} \alpha_{2}-\boldsymbol{\phi}_{1} \beta_{2} \\
& \boldsymbol{\phi}_{4} \beta_{4}=\mathbf{K}^{-1} \boldsymbol{M} \boldsymbol{\phi}_{3}-\boldsymbol{\phi}_{3} \alpha_{3}-\boldsymbol{\phi}_{2} \beta_{3} \\
& \boldsymbol{\phi}_{5} \beta_{5}=\mathbf{K}^{-1} \boldsymbol{M} \boldsymbol{\phi}_{4}-\boldsymbol{\phi}_{4} \alpha_{4}-\boldsymbol{\phi}_{3} \beta_{4}
\end{aligned}
$$

Collecting the ϕ in a matrix Φ, the above can be written

$$
\mathbf{K}^{-1} \boldsymbol{M} \boldsymbol{\Phi}=\boldsymbol{\Phi}\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & 0 & 0 & 0 \\
\beta_{2} & \alpha_{2} & \beta_{3} & 0 & 0 \\
0 & \beta_{3} & \alpha_{3} & \beta_{4} & 0 \\
0 & 0 & \beta_{4} & \alpha_{4} & \beta_{5} \\
0 & 0 & 0 & \beta_{5} & \alpha_{5}
\end{array}\right]=\boldsymbol{\Phi} \boldsymbol{T}
$$

where we have introduce T, a symmetric, tridiagonal matrix where $t_{i, i}=\alpha_{i}$ and
$t_{i, i+1}=t_{i+1, i}=\beta_{i+1}$.
Premultiplying by $\boldsymbol{\Phi}^{\top} \mathbf{M}$

$$
\Phi^{\top} M K^{-1} M \Phi=\underbrace{\Phi^{\top} M \Phi}_{\mathrm{I}} \mathbf{T}=\mathbf{T}
$$

Eigenvectors

Num DRV, Num Integration, MSE

Write the unknown in terms of the reduced base $\boldsymbol{\Phi}$ and a vector of Ritz coordinates \boldsymbol{z}, substitute in the undamped eigenvector equation, premultiply by $\boldsymbol{\Phi}^{\top} \mathbf{M} \mathbf{K}^{-1}$ and apply the semi-orthogonality relationship written in the previous slide.

1. $\omega^{2} M \Phi z=K \Phi z$.

2. $w^{2} \mathbf{T} z=\mathbf{I} z \quad \Rightarrow \quad \omega^{2} \mathbf{T} z=z$.

Due to the tridiagonal structure of \mathbf{T}, the approximate eigenvalues can be computed with very small computational effort.

Giacomo Boffi
Derived Ritz
Vectors
Derived Ritz
Vectors
The procedure by
example
example
The Tridiagonal
Matrix
Solution
Solution
Strategies
Re-
orthogonalization
Required Number
of DRV
Example
Numerical
Integration
Multiple Support Excitation

Direct Integration

Write the equation of motion for a Rayleigh damped system, with $p(x, t)=r f(t)$ in terms of the $D R V$'s and Ritz coordinates z

$$
M \Phi \ddot{z}+c_{0} M \Phi \dot{z}+c_{1} K \Phi \dot{z}+K \Phi z=r f(t)
$$

premultiplying by $\Phi^{\top} \mathbf{M} \mathbf{K}^{-1}$, substituting \mathbf{T} and I where appropriate, doing a series of substitutions on the right member

$$
\begin{aligned}
\mathbf{T}\left(\ddot{\boldsymbol{z}}+\mathrm{c}_{0} \dot{\boldsymbol{z}}\right)+\mathbf{I}\left(\mathrm{c}_{1} \dot{\boldsymbol{z}}+\boldsymbol{z}\right) & =\boldsymbol{\Phi}^{\top} \boldsymbol{M} \boldsymbol{K}^{-1} \mathbf{r} f(\mathrm{t}) \\
& =\boldsymbol{\Phi}^{\top} \boldsymbol{M} \boldsymbol{Q}_{1} \mathrm{f}(\mathrm{t}) \\
& =\boldsymbol{\Phi}^{\top} \boldsymbol{M} \beta_{1} \boldsymbol{\Phi}_{1} f(\mathrm{t}) \\
& =\beta_{1}\left\{\begin{array}{llllll}
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right\}^{\top} \mathrm{f}(\mathrm{t}) .
\end{aligned}
$$

Using the DRV's as a Ritz base, we have a set of mildly coupled differential equations, where external loadings directly excite the first mode only, and all the other modes are excited by inertial coupling only, with rapidly diminishing effects.

Modal Superposition or Direct Integration?

Static effects being fully taken into account by the response of the first $D R V$, only a few $D R V$'s are needed in direct integration of the equation of motion.
Furthermore special algorithms were devised for the integration of the tridiagonal equations of motion, that aggravate computational effort by $\approx 40 \%$ only with respect to the integration of uncoupled equations.
Direct integration in Ritz coordinate is the best choice when the loading shape is complex and the loading duration is relatively short. On the other hand, in applications of earthquake engineering the loading shape is well behaved and the duration is significantly longer, so that the savings in integrating the uncoupled equations of motion outbalance the cost of the eigenvalue extraction.

Re-Orthogonalisation

Dum DR, Num Integration, MSE

Denoting with Φ_{i} the i columns matrix that collects the $D R V$'s computed, we define an ortogonality test vector

$$
\boldsymbol{w}_{i}=\boldsymbol{\phi}_{i+1}^{\top} \mathbf{M} \boldsymbol{\Phi}_{i}=\left\{\begin{array}{lllll}
w_{1} & w_{2} & \ldots & w_{i-1} & w_{i}
\end{array}\right\}
$$

that expresses the orthogonality of the newly computed vector with respect to the previous ones.
When one of the components of $\boldsymbol{w}_{\mathfrak{i}}$ exceeds a given tolerance, the non-exactly orthogonal $\boldsymbol{\phi}_{\mathrm{i}+1}$ must be subjected to a Gram-Schmidt orthogonalisation with respect to all the preceding $D R V$'s.

Required Number of DRV

Analogously to the modal partecipation factor the Ritz partecipation factor $\hat{\Gamma}_{i}$ is defined

$$
\hat{\Gamma}_{i}=\underbrace{\frac{\phi_{i}^{\top} r}{\phi_{i}^{\top} M \phi_{i}}}_{1}=\boldsymbol{\phi}_{i}^{\top} \mathbf{r}
$$

(note that we divided by a unit mass).
The loading shape can be expressed as a linear combination of Ritz vector inertial forces,

$$
\mathbf{r}=\sum \hat{\Gamma}_{i} \mathbf{M} \phi_{i} .
$$

The number of computed $D R V$'s can be assumed sufficient when $\hat{\Gamma}_{i}$ falls below an assigned value.

Required Number of DRV

Another way to proceed: define an error vector

$$
\hat{\mathbf{e}}_{i}=\mathbf{r}-\sum_{\mathbf{j}=1}^{\mathrm{i}} \hat{\Gamma}_{j} \boldsymbol{M} \boldsymbol{\phi}_{\mathrm{j}}
$$

and an error norm

$$
\left|\hat{e}_{i}\right|=\frac{\mathbf{r}^{\top} \hat{\mathbf{e}}_{i}}{\mathbf{r}^{\top} \mathbf{r}}
$$

and stop at ϕ_{i} when the error norm falls below a given value. BTW, an error norm can be defined for modal analysis too.
Assuming normalized eigenvectors,

$$
\mathbf{e}_{i}=\mathbf{r}-\sum_{j=1}^{\mathbf{i}} \Gamma_{j} \boldsymbol{M} \boldsymbol{\phi}_{j}, \quad\left|\mathbf{e}_{\mathfrak{i}}\right|=\frac{\mathbf{r}^{\top} \mathbf{e}_{i}}{\mathbf{r}^{\top} \mathbf{r}}
$$

Error Norms, modes
In this example, we compare the error norms using modal forces and $D R V$ forces to approximate 3 different loading shapes.
The building model, on the left, used in this example is the same that we already used in different examples.
The structural matrices are $\mathbf{M}=\mathrm{m}\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$,
$\mathbf{K}=\mathrm{k}\left[\begin{array}{ccccc}2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1\end{array}\right], \mathbf{F}=\frac{1}{\mathrm{k}}\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5\end{array}\right]$.
Eigenvalues and eigenvectors matrices are:

$$
\begin{gathered}
\boldsymbol{\Lambda}=\left[\begin{array}{lllll}
0.0810 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.6903 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 1.7154 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 2.8308 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 3.6825
\end{array}\right], \\
\\
\boldsymbol{\Psi}=\left[\begin{array}{lllll}
+0.1699 & -0.4557 & +0.5969 & +0.5485 & -0.3260 \\
+0.3260 & -0.5969 & +0.1699 & -0.4557 & +0.5485 \\
+0.4557 & -0.3260 & -0.5485 & -0.1699 & -0.5969 \\
+0.5485 & +0.1699 & -0.3260 & +0.5969 & +0.4557 \\
+0.5969 & +0.5485 & +0.4557 & -0.3260 & -0.1699
\end{array}\right]
\end{gathered}
$$

Error Norms, DRVs

The $D R V$'s are computed for three different shapes of force vectors,
Giacomo Boffi

$$
\begin{aligned}
\mathbf{r}_{(1)} & =\left\{\begin{array}{lllll}
0 & 0 & 0 & 0 & +1
\end{array}\right\}^{\top} \\
\mathbf{r}_{(2)} & =\left\{\begin{array}{llllll}
0 & 0 & 0 & -2 & 1
\end{array}\right\}^{\top} \\
\mathbf{r}_{(3)} & =\left\{\begin{array}{lllll}
1 & 1 & 1 & 1 & +1
\end{array}\right\}^{\top}
\end{aligned}
$$

For the three force shapes, we have of course different sets of $D R V$'s

Error Norm, comparison

Reduced Eigenproblem using DRV base

Using the same structure as in the previous example, we want to compute the first 3 eigenpairs using the first $3 D R V$'s computed for $\mathbf{r}=\mathbf{r}_{(3)}$ as a reduced Ritz base, with the understanding that $\mathbf{r}_{(3)}$ is a reasonable approximation to inertial forces in mode number 1
The $D R V$'s used were printed in a previous slide, the reduced mass matrix is the unit matrix (by orthonormalisation of the $D R V$'s), the reduced stiffness is

$$
\hat{\mathbf{K}}=\boldsymbol{\Phi}^{\top} \boldsymbol{K} \boldsymbol{\Phi}=\left[\begin{array}{lll}
+0.0820 & -0.0253 & +0.0093 \\
-0.0253 & +0.7548 & -0.2757 \\
+0.0093 & -0.2757 & +1.8688
\end{array}\right] \text {. }
$$

The eigenproblem, in Ritz coordinates is

$$
\hat{\mathbf{K}} \boldsymbol{z}=\omega^{2} \boldsymbol{z} .
$$

A comparison between exact solution and Ritz approximation is in the next slide.

Reduced Eigenproblem using DRV base, comparison

The eigenvectors matrices are
$\boldsymbol{\Psi}=\left[\begin{array}{lll}+0.1699 & -0.4557 & +0.5969 \\ +0.3260 & -0.5969 & +0.1699 \\ +0.4557 & -0.3260 & -0.5485 \\ +0.5485 & +0.1699 & -0.3260 \\ +0.5969 & +0.5485 & +0.4557\end{array}\right] \quad$ and $\quad \hat{\boldsymbol{\Psi}}=\left[\begin{array}{lll}+0.1699 & -0.4553 & +0.8028 \\ +0.3260 & -0.6098 & -0.1130 \\ +0.4557 & -0.3150 & -0.4774 \\ +0.5485 & +0.1800 & -0.1269 \\ +0.5969 & +0.5378 & +0.3143\end{array}\right]$.

Derived Ritz
Vectors
Introduction
Vectors
The procedure by
example
example
The Tridiagonal
Solution
Strategies
$\mathrm{Re}-$
orthogonalization
Required Number
Example
Numerical
Integration
Multiple Support Excitation

In the following, hatted matrices refer to approximate results.
The eigenvalues matrices are

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ccc}
0.0810 & 0 & 0 \\
0 & 0.6903 & 0 \\
0 & 0 & 1.7154
\end{array}\right] \quad \text { and } \quad \hat{\boldsymbol{\Lambda}}=\left[\begin{array}{ccc}
0.0810 & 0 & 0 \\
0 & 0.6911 & 0 \\
0 & 0 & 1.9334
\end{array}\right]
$$

DRV,
Num Integration,
MSE
Giacomo Boffi
Introduction
Derived Ritz Vectors
The procedure by example
The Tridiagonal Matrix
Solution Strategies
Re-orthogonalization
Required Number of DRV
Example
Numerical Integration
Introduction
Constant Acceleration
Wilson's Theta Method
Multiple Support Excitation
Equation of motion
EOM Example
Response Analysis
Response Analysis Example

Introduction to Numerical Integration

When we reviewed the numerical integration methods, we said that some methods are unconditionally stable and others are conditionally stable, that is the response blows-out if the time step h is great with respect to the natural preriod of vibration, $h>\frac{T_{n}}{a}$, where a is a constant that depends on the numerical algorithm.
For MDOF systems, the relevant T is the one associated with the

Derived Ritz Vectors
Numerical
Integration
Introduction
Constant
Acceleration
Wilson's Theta
Method
Multiple Support Excitation highest mode present in the structural model, so for moderately complex structures it becomes impossibile to use a conditionally stable algorithm.
In the following, two unconditionally stable algorithms will be analysed, i.e., the constant acceleration method, that we already know, and the new Wilson's θ method.
-

Constant Acceleration, preliminaries

- The initial conditions are known:

$$
x_{0}, \quad \dot{\chi}_{0}, \quad p_{0}, \quad \rightarrow \quad \ddot{x}_{0}=\mathbf{M}^{-1}\left(\mathbf{p}_{0}-\mathbf{C} \dot{\chi}_{0}-\mathbf{K} x_{0}\right) .
$$

- With a fixed time step h, compute the constant matrices

$$
A=2 \mathbf{C}+\frac{4}{h} \boldsymbol{M}, \quad B=2 \boldsymbol{M}, \quad \mathbf{K}^{+}=\frac{2}{h} \mathbf{C}+\frac{4}{h^{2}} \boldsymbol{M}
$$

Constant Acceleration, stepping

- Starting with $i=0$, compute the effective force increment,

$$
\Delta \hat{\mathbf{p}}_{i}=\mathbf{p}_{i+1}-\mathbf{p}_{i}+\mathbf{A} \dot{\boldsymbol{x}}_{i}+\mathbf{B} \ddot{\boldsymbol{x}}_{i}
$$

the tangent stiffness K_{i} and the current incremental stiffness,

$$
\hat{\mathbf{K}}_{i}=\mathbf{K}_{\mathbf{i}}+\mathbf{K}^{+} .
$$

- For linear systems, it is

$$
\Delta \mathbf{x}_{i}=\hat{\mathbf{K}}_{i}^{-1} \Delta \hat{\mathbf{p}}_{i}
$$

for a non linear system Δx_{i} is produced by the modified Newton-Raphson iteration procedure.

- The state vectors at the end of the step are

$$
x_{i+1}=x_{i}+\Delta x_{i}, \quad \dot{x}_{i+1}=2 \frac{\Delta x_{i}}{h}-\dot{x}_{i}
$$

Constant Acceleration, new step

- Increment the step index, $\mathfrak{i}=\mathfrak{i}+1$.
- Compute the accelerations using the equation of equilibrium,

$$
\ddot{x}_{i}=M^{-1}\left(p_{i}-C \dot{x}_{i}-K x_{i}\right) .
$$

- Repeat the substeps detailed in the previous slide.

Modified Newton-Raphson

- Initialization

$$
\begin{aligned}
\mathbf{y}_{0} & =\boldsymbol{x}_{\mathrm{i}} & & \mathbf{f}_{\mathrm{S}, 0}=\mathbf{f}_{\mathbf{S}} \text { (system state) } \\
\Delta \mathbf{R}_{1} & =\Delta \hat{\mathbf{p}}_{\mathrm{i}} & & \mathbf{K}_{\mathrm{T}}=\hat{\mathbf{K}}_{\mathrm{i}}
\end{aligned}
$$

- For $\boldsymbol{j}=1,2, \ldots$

$$
\mathrm{K}_{\mathrm{T}} \Delta \mathbf{y}_{j}=\Delta \mathbf{R}_{\mathrm{j}}
$$

$$
\rightarrow \Delta \boldsymbol{y}_{j} \text { (test for convergence) }
$$

$$
\Delta \dot{\mathrm{y}}_{j}=\cdots
$$

$$
\mathbf{y}_{j}=\mathbf{y}_{j-1}+\Delta \mathbf{y}_{j}
$$

$$
\dot{\mathbf{y}}_{j}=\dot{\mathbf{y}}_{j-1}+\Delta \dot{\mathbf{y}}_{j}
$$

$$
\mathbf{f}_{\mathrm{S}, \mathrm{j}}=\mathbf{f}_{\mathbf{S}} \text { (updated system state) }
$$

$$
\Delta \mathbf{f}_{\mathrm{S}, \mathrm{j}}=\mathbf{f}_{\mathrm{S}, \mathrm{j}}-\mathbf{f}_{\mathrm{S}, \mathrm{j}-1}-\left(\mathbf{K}_{\mathrm{T}}-\mathbf{K}_{\mathrm{i}}\right) \Delta \mathbf{y}_{\mathrm{j}}
$$

$$
\Delta \mathbf{R}_{j+1}=\Delta \mathbf{R}_{j}-\Delta \mathbf{f}_{\mathrm{s}, \mathrm{j}}
$$

- Return the value $\Delta x_{i}=y_{j}-x_{i}$

A suitable convergence test is

$$
\frac{\Delta \mathbf{R}_{j}^{\top} \Delta \mathbf{y}_{j}}{\Delta \hat{\mathbf{p}}_{\mathrm{i}}^{\top} \Delta x_{\mathrm{i}, \mathrm{j}}} \leqslant \text { tol }
$$

Wilson's Theta Method

The linear acceleration method is significantly more accurate than the constant acceleration method, meaning that it is possible to use within a required accuracy.
On the other hand, the method is not safely applicable to MDOF systems due to its numerical instability.
Professor Ed Wilson demonstrated that simple variations of the linear acceleration method can be made unconditionally stable and found the most accurate in this family of algorithms, collectively known as Wilson's θ methods.

Wilson's θ method

Wilson's idea is very simple: the results of the linear acceleration algorithm are good enough only in a fraction of the time step. Wilson demonstrated that his idea was correct, too...

Giacomo Boffi

The procedure is really simple,

1. solve the incremental equation of equilibrium using the linear acceleration algorithm, with an extended time step

$$
\hat{h}=\theta h, \quad \theta \geqslant 1
$$

2. compute the extended acceleration increment
$\hat{\Delta} \ddot{x}$ at $\hat{t}=t_{i}+\hat{h}$,
3. scale the extended acceleration increment under the assumption of linear acceleration, $\Delta \ddot{x}=\frac{1}{\theta} \hat{\Delta} \ddot{x}$,
4. compute the velocity and displacements increment using the reduced value of the increment of acceleration.

Wilson's θ method description

Using the same symbols used for constant acceleration.
First of all, for given initial conditions x_{0} and \dot{x}_{0}, initialise the procedure computing the constants (matrices) used in the following procedure and the initial acceleration,

$$
\begin{aligned}
\ddot{x}_{0} & =\boldsymbol{M}^{-1}\left(\mathbf{p}_{0}-\mathbf{C} \dot{x}_{0}-\mathbf{K} \boldsymbol{x}_{0}\right), \\
\boldsymbol{A} & =6 \boldsymbol{M} / \hat{h}+3 \mathbf{C} \\
\mathbf{B} & =3 \boldsymbol{M}+\hat{h} \mathbf{C} / 2, \\
\mathbf{K}^{+} & =3 \mathbf{C} / \hat{h}+6 \boldsymbol{M} / \hat{h}^{2} .
\end{aligned}
$$

Wilson's θ method description

Starting with $i=0$,

1. update the tangent stiffness, $\mathbf{K}_{\mathbf{i}}=\mathbf{K}\left(\boldsymbol{x}, \dot{x}_{i}\right)$ and the effective stiffness, $\hat{\mathbf{K}}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}}+\mathbf{K}^{+}$,
compute $\hat{\Delta} \hat{\mathbf{p}}_{i}=\theta \Delta \mathbf{p}_{i}+\boldsymbol{A} \dot{\boldsymbol{x}}_{i}+\mathbf{B} \ddot{\boldsymbol{x}}_{i}$,
with $\Delta p_{i}=p\left(t_{i}+h\right)-p\left(t_{i}\right)$
2. solve $\hat{\mathbf{K}}_{i} \hat{\Delta} \boldsymbol{x}=\hat{\Delta} \hat{\mathbf{p}}_{i}$, compute

$$
\hat{\Delta} \ddot{x}=6 \frac{\hat{\Delta} x}{\hat{h}^{2}}-6 \frac{\dot{x}_{i}}{\hat{h}}-3 \ddot{x}_{i} \rightarrow \Delta \ddot{x}=\frac{1}{\theta} \hat{\Delta} \ddot{x}
$$

3. compute

$$
\begin{aligned}
\Delta \dot{x} & =\left(\ddot{x}_{i}+\frac{1}{2} \Delta \ddot{x}\right) h \\
\Delta x & =\dot{x}_{i} h+\left(\frac{1}{2} \ddot{x}_{i}+\frac{1}{6} \Delta \ddot{x}\right) h^{2}
\end{aligned}
$$

4. update state, $x_{i+1}=\chi_{i}+\Delta x, \dot{x}_{i+1}=\dot{x}_{i}+\Delta \dot{x}, \mathfrak{i}=\mathfrak{i}+1$, iterate restarting from 1 .

A final remark	$\begin{gathered} \text { DRV, } \\ \text { Num Integration, } \\ \text { MSE } \end{gathered}$
The Theta Method is unconditionally stable for $\theta>1.37$ and it achieves the maximum accuracy for $\theta=1.42$.	Giacomo Boffi Derived Ritz Vectors Numerical Integration Introduction Constant Wilson's Theta Method Multiple Support Excitation

Multiple Support Excitation	$\begin{gathered} \text { DRV, } \\ \text { Num Intergation, } \\ \text { MSE } \end{gathered}$
Derived Ritz Vectors Introduction	Giacomo Boffi
Derived Ritz Vectors	Derived Ritz Vectors
The procedure by example	Numerical
The Tridiagonal Matrix	Integration
Solution Strategies	Multiple Support
Re-orthogonalization	${ }_{\text {Exectiation }}^{\text {Equation of }}$
Required Number of DRV	EOM Example
Example	Ressonse Analysis
Numerical Integration	Example
Introduction	
Constant Acceleration	
Wilson's Theta Method	
Multiple Support Excitation	
Equation of motion	
EOM Example	
Response Analysis	
Response Analysis Example	

Definitions Num DR,

Consider the case of a structure where the supports are subjected to
Numerical Integration assigned displacements histories, $\mathfrak{u}_{i}=\mathfrak{u}_{\mathfrak{i}}(\mathrm{t})$.
To solve this problem, we start with augmenting the degrees of freedom with the support displacements.
We denote the superstructure DOF with x_{T}, the support DOF with $\boldsymbol{x}_{\mathrm{g}}$ and we have a global displacement vector \boldsymbol{x},

$$
x=\left\{\begin{array}{l}
x_{\mathrm{T}} \\
x_{\mathrm{g}}
\end{array}\right\}
$$

The Equation of Motion

Damping effects will be introduced at the end of our manipulations.
The equation of motion is
where \mathbf{M} and \mathbf{K} are the usual structural matrices, while $\boldsymbol{M}_{\mathrm{g}}$ and \mathbf{M}_{gg} are, in the common case of a lumped mass model, zero matrices.

$$
\left[\begin{array}{cc}
\boldsymbol{M} & \boldsymbol{M}_{\mathrm{g}} \\
\boldsymbol{M}_{\mathrm{g}}^{\mathrm{T}} & \boldsymbol{M}_{\mathrm{gg}}
\end{array}\right]\left\{\begin{array}{c}
\ddot{\dddot{ }}_{\mathrm{T}} \\
\ddot{\boldsymbol{x}}_{\mathrm{g}}
\end{array}\right\}+\left[\begin{array}{cc}
\mathrm{K} & \boldsymbol{K}_{\mathrm{g}} \\
\mathbf{K}_{\mathrm{g}}^{\top} & \mathbf{K}_{\mathrm{gg}}
\end{array}\right]\left\{\begin{array}{l}
\boldsymbol{x}_{\mathrm{T}} \\
\boldsymbol{x}_{\mathrm{g}}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
\mathbf{p}_{\mathrm{g}}
\end{array}\right\}
$$

Static Components

We decompose the vector of displacements into two contributions, a static contribution and a dynamic contribution, attributing the given support displacements to the static contribution.

$$
\left\{\begin{array}{l}
x_{T} \\
x_{g}
\end{array}\right\}=\left\{\begin{array}{l}
x_{s} \\
x_{g}
\end{array}\right\}+\left\{\begin{array}{l}
x \\
0
\end{array}\right\}
$$

where \boldsymbol{x} is the usual relative displacements vector.

Determination of static components

Because the $\boldsymbol{x}_{\mathrm{g}}$ are given, we can write two matricial equations that
Giacomo Boffi give us the static supertructure displacements and the forces we must apply to the supports,

$$
\begin{aligned}
K x_{s}+K_{g} x_{g} & =0 \\
\mathbf{K}_{g}^{\top} \boldsymbol{x}_{s}+K_{g g} \boldsymbol{x}_{g} & =\mathbf{p}_{g}
\end{aligned}
$$

From the first equation we have

$$
x_{\mathrm{s}}=-\mathrm{K}^{-1} \mathrm{~K}_{\mathrm{g}} \boldsymbol{x}_{\mathrm{g}}
$$

and from the second we have

$$
\mathbf{p}_{\mathrm{g}}=\left(\mathbf{K}_{\mathrm{gg}}-\mathbf{K}_{\mathrm{g}}^{\top} \mathbf{K}^{-1} \mathbf{K}_{\mathrm{g}}\right) \boldsymbol{x}_{\mathrm{g}}
$$

The support forces are zero when the structure is isostatic or the structure is subjected to a rigif motion.

Going back to the EOM

We need the first row of the two matrix equation of equilibrium,

$$
\left[\begin{array}{cc}
\mathbf{M} & \mathbf{M}_{g} \\
\mathbf{M}_{g}^{\top} & \mathbf{M}_{g g}
\end{array}\right]\left\{\begin{array}{c}
\ddot{x}_{T} \\
\ddot{\boldsymbol{x}}_{g}
\end{array}\right\}+\left[\begin{array}{cc}
\mathbf{K} & \mathbf{K}_{g} \\
\mathbf{K}_{g}^{\top} & \mathbf{K}_{g g}
\end{array}\right]\left\{\begin{array}{l}
\boldsymbol{x}_{T} \\
\boldsymbol{x}_{g}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
p_{g}
\end{array}\right\}
$$

substituting $x_{T}=x_{s}+x$ in the first row

$$
M \ddot{x}+M \ddot{x}_{s}+M_{g} \ddot{x}_{g}+K x+K x_{s}+K_{g} x_{g}=0
$$

Derived Ritz Vectors
by the equation of static equilibrium, $\mathbf{K} \boldsymbol{x}_{s}+\mathrm{K}_{\mathrm{g}} \boldsymbol{x}_{\mathrm{g}}=0$ we can simplify
$\mathbf{M} \ddot{\boldsymbol{x}}+\mathbf{M} \ddot{\chi}_{s}+\mathbf{M}_{g} \ddot{\chi}_{g}+K x=M \ddot{x}+\left(\mathbf{M}_{g}-\mathbf{M} K^{-1} K_{g}\right) \ddot{x}_{g}+K x=0$.

Influence matrix

The equation of motion is

$$
\mathbf{M} \ddot{\boldsymbol{x}}+\left(\mathbf{M}_{\mathrm{g}}-\mathbf{M K} \mathbf{K}^{-1} \mathbf{K}_{\mathrm{g}}\right) \ddot{\mathbf{x}}_{\mathrm{g}}+\mathbf{K} \boldsymbol{x}=0 .
$$

We define the influence matrix E by

$$
\mathbf{E}=-\mathbf{K}^{-1} \mathbf{K}_{\mathrm{g}}
$$

and write, reintroducing the damping effects,

$$
M \ddot{x}+\mathbf{C} \dot{x}+K x=-\left(M E+M_{g}\right) \ddot{x}_{g}-\left(C E+C_{g}\right) \dot{x}_{g}
$$

Simplification of the EOM

For a lumped mass model, $\boldsymbol{M}_{\mathrm{g}}=0$ and also the efficace forces due to damping are really small with respect to the inertial ones, and

$$
M \ddot{x}+C \dot{x}+K x=-M E \ddot{x}_{g} .
$$

Significance of E

E can be understood as a collection of vectors $\boldsymbol{e}_{i}, i=1, \ldots, N_{g}$ (N_{g} being the number of DOF associated with the support motion),

$$
E=\left[\begin{array}{llll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{\mathrm{N}_{\mathrm{g}}}
\end{array}\right]
$$

where the individual $\mathbf{e}_{\boldsymbol{i}}$ collects the displacements in all the DOF of the superstructure due to imposing a unit displacement to the support DOF number i.

Significance of \mathbf{E}

This understanding means that the influence matrix can be computed column by column,

- in the general case by releasing one support DOF, applying a unit force to the released DOF, computing all the displacements and scaling the displacements so that the support displacement component is made equal to 1 ,
- or in the case of an isostatic component by examining the instantaneous motion of the 1 DOF rigid system that we obtain by releasing one constraint.

EOM example

We want to determine the influence matrix \mathbf{E} for the structure in the figure above, subjected to an assigned motion in B.

First step, put in evidence another degree of freedom x_{3} corresponding to the assigned vertical motion of the support in B and compute, using e.g. the PVD, the flexibility matrix:

$$
F=\frac{L^{3}}{3 E J}\left[\begin{array}{ccc}
54.0000 & 8.0000 & 28.0000 \\
8.0000 & 2.0000 & 5.0000 \\
28.0000 & 5.0000 & 16.0000
\end{array}\right]
$$

EOM example

The stiffness matrix is found by inversion,

$$
\mathbf{K}=\frac{3 E \mathrm{~J}}{13 \mathrm{~L}^{3}}\left[\begin{array}{ccc}
+7.0000 & +12.0000 & -16.0000 \\
+12.0000 & +80.0000 & -46.0000 \\
-16.0000 & -46.0000 & +44.0000
\end{array}\right]
$$

We are interested in the partitions $K_{x x}$ and $K_{x g}$:

$$
\mathbf{K}_{x x}=\frac{3 E \mathrm{~J}}{13 \mathrm{~L}^{3}}\left[\begin{array}{cc}
+7.0000 & +12.0000 .0000 \\
+12.0000 & +80.0000 .0000
\end{array}\right], \mathbf{K}_{x g}=\frac{3 \mathrm{EJ}}{13 \mathrm{~L}^{3}}\left[\begin{array}{l}
-16 \\
-46
\end{array}\right] .
$$

Giacomo Boffi

The influence matrix is

$$
\mathbf{E}=-\mathbf{K}_{x x}^{-1} \mathbf{K}_{x g}=\frac{1}{16}\left[\begin{array}{c}
28.0000 \\
5.0000
\end{array}\right]
$$

please compare \mathbf{E} with the last column of the flexibility matrix, \mathbf{F}.

Response analysis

Consider the vector of support accelerations,

$$
\ddot{x}_{g}=\left\{\ddot{x}_{g l}, \quad l=1, \ldots, N_{g}\right\}
$$

and the effective load vector

$$
p_{e f f}=-M E \ddot{x}_{g}=-\sum_{l=1}^{N_{g}} M e_{l} \ddot{x}_{g l}(t) .
$$

We can write the modal equation of motion for mode number n

$$
\ddot{q}_{n}+2 \zeta_{n} \omega_{n} \dot{q}_{n}+\omega_{n}^{2} q_{n}=-\sum_{l=1}^{N_{g}} \Gamma_{n l} \ddot{x}_{g l}(t)
$$

where

$$
\Gamma_{\mathrm{nl}}=\frac{\boldsymbol{\psi}_{\mathrm{n}}^{\top} \mathbf{M} \mathbf{e}_{\mathrm{l}}}{\mathbf{M}_{\mathrm{n}}^{*}}
$$

Response analysis, continued

The solution $\mathrm{q}_{\mathrm{n}}(\mathrm{t})$ is hence, with the notation of last lesson,

$$
q_{n}(t)=\sum_{l=1}^{N_{g}} \Gamma_{n l} D_{n l}(t)
$$

$D_{n l}$ being the response function for ζ_{n} and ω_{n} due to the ground excitation $\ddot{x}_{g l}$.

Response analysis, continued

The total displacements x_{T} are given by two contributions, $x_{\mathrm{T}}=\chi_{\mathrm{s}}+\boldsymbol{x}$, the expression of the contributions are

Giacomo Boffi

$$
x=\sum_{n=1}^{N} \sum_{l=1}^{N_{g}} \psi_{n} \Gamma_{n l} D_{n l}(t)
$$

and finally we have

$$
x_{T}=\sum_{l=1}^{N_{g}} e_{l} x_{g l}(t)+\sum_{n=1}^{N} \sum_{l=1}^{N_{g}} \psi_{n} \Gamma_{n l} D_{n l}(t)
$$

Forces

> DRV, Num Integration, MSE

For a computer program, the easiest way to compute the nodal forces is
a) compute, element by element, the nodal displacements by \boldsymbol{x}_{\top} and x_{g},
b) use the element stiffness matrix compute nodal forces,
c) assemble element nodal loads into global nodal loads.

That said, let's see the analytical development...

Forces

The forces on superstructure nodes due to deformations are

$$
\begin{gathered}
\mathbf{f}_{s}=\sum_{n=1}^{N} \sum_{l=1}^{N_{g}} \Gamma_{n l} K \psi_{n} D_{n l}(t) \\
\mathbf{f}_{s}=\sum_{n=1}^{N} \sum_{l=1}^{N_{g}}\left(\Gamma_{n l} M \psi_{n}\right)\left(\omega_{n}^{2} D_{n l}(t)\right)=\sum \sum r_{n l} A_{n l}(t)
\end{gathered}
$$

the forces on support

$$
\mathbf{f}_{g s}=\mathbf{K}_{\mathrm{g}}^{\top} \boldsymbol{x}_{\mathrm{T}}+\mathbf{K}_{g \mathrm{~g}} \boldsymbol{x}_{\mathrm{g}}=\mathbf{K}_{\mathrm{g}}^{\top} \boldsymbol{x}+\mathbf{p}_{\mathrm{g}}
$$

or, using $\boldsymbol{x}_{\mathrm{s}}=\mathrm{E} \boldsymbol{x}_{\mathrm{g}}$

$$
\mathbf{f}_{\mathrm{gs}}=\left(\sum_{\mathrm{l}=1}^{\mathrm{N}_{\mathrm{g}}} \mathbf{K}_{\mathrm{g}}^{\top} \mathbf{e}_{\mathrm{l}}+\mathbf{K}_{\mathrm{gg}, \mathrm{l}}\right){x_{\mathrm{g}} \mathrm{l}}+\sum_{\mathrm{n}=1}^{\mathrm{N}} \sum_{\mathrm{l}=1}^{\mathrm{N}_{\mathrm{g}}} \Gamma_{\mathrm{nl}} \mathbf{K}_{\mathrm{g}}^{\top} \boldsymbol{\psi}_{\mathrm{n}} \mathrm{D}_{\mathrm{nl}}(\mathrm{t})
$$

Forces Num

The structure response components must be computed considering
the structure loaded by all the nodal forces,

$$
\mathbf{f}=\left\{\begin{array}{c}
\mathbf{f}_{s} \\
\mathbf{f}_{\boldsymbol{g s}}
\end{array}\right\}
$$

Example

The stiffness matrix for the 10×10 model is

$$
\mathbf{K}_{10 \times 10}=\frac{\mathrm{EJ}}{\mathrm{~L}^{3}}\left[\begin{array}{cccccccccc}
12 & -12 & 0 & 0 & 0 & 6 \mathrm{~L} & 6 \mathrm{~L} & 0 & 0 & 0 \\
-12 & 24 & -12 & 0 & 0 & -6 \mathrm{~L} & 0 & 6 \mathrm{~L} & 0 & 0 \\
0 & -12 & 24 & -12 & 0 & 0 & -6 \mathrm{~L} & 0 & 6 \mathrm{~L} & 0 \\
0 & 0 & -12 & 24 & -12 & 0 & 0 & -6 \mathrm{~L} & 0 & 6 \mathrm{~L} \\
0 & 0 & 0 & -12 & 12 & 0 & 0 & 0 & -6 \mathrm{~L} & -6 \mathrm{~L} \\
6 \mathrm{~L} & -6 \mathrm{~L} & 0 & 0 & 0 & 4 \mathrm{~L}^{2} & 2 \mathrm{~L}^{2} & 0 & 0 & 0 \\
6 \mathrm{~L} & 0 & -6 \mathrm{~L} & 0 & 0 & 2 \mathrm{~L}^{2} & 8 \mathrm{~L}^{2} & 2 \mathrm{~L}^{2} & 0 & 0 \\
0 & 6 \mathrm{~L} & 0 & -6 \mathrm{~L} & 0 & 0 & 2 \mathrm{~L}^{2} & 8 \mathrm{~L}^{2} & 2 \mathrm{~L}^{2} & 0 \\
0 & 0 & 6 \mathrm{~L} & 0 & -6 \mathrm{~L} & 0 & 0 & 2 \mathrm{~L}^{2} & 8 \mathrm{~L}^{2} & 2 \mathrm{~L}^{2} \\
0 & 0 & 0 & 6 \mathrm{~L} & -6 \mathrm{~L} & 0 & 0 & 0 & 2 \mathrm{~L}^{2} & 4 \mathrm{~L}^{2}
\end{array}\right]
$$

Example

The first product of the static condensation procedure is the linear
Giacomo Boffi mapping between translational and rotational degrees of freedom, given by

$$
\overrightarrow{\boldsymbol{\phi}}=\frac{1}{56 \mathrm{~L}}\left[\begin{array}{ccccc}
71 & -90 & 24 & -6 & 1 \\
26 & 12 & -48 & 12 & -2 \\
-7 & 42 & 0 & -42 & 7 \\
2 & -12 & 48 & -12 & -26 \\
-1 & 6 & -24 & 90 & -71
\end{array}\right] \overrightarrow{\boldsymbol{x}} .
$$

Example

Following static condensation and reordering rows and columns, the partitioned stiffness matrices are

$$
\begin{aligned}
\mathrm{K} & =\frac{\mathrm{EJ}}{28 \mathrm{~L}^{3}}\left[\begin{array}{cc}
2768 & 108 \\
108 & 276
\end{array}\right], \\
\mathrm{K}_{\mathrm{g}} & =\frac{\mathrm{EJ}}{28 \mathrm{~L}^{3}}\left[\begin{array}{cc}
-102 & -164 \\
-18 & -264 \\
-18
\end{array}\right], \\
\mathrm{K}_{\mathrm{gg}} & =\frac{\mathrm{EJ}}{28 \mathrm{~L}^{3}}\left[\begin{array}{ccc}
45 & 72 & 72 \\
7284 & 3 & 3 \\
3 & 72 & 72
\end{array}\right] .
\end{aligned}
$$

The influence matrix is

$$
\mathbf{E}=\mathbf{K}^{-1} \mathbf{K}_{\mathrm{g}}=\frac{1}{32}\left[\begin{array}{ccc}
13 & 22 & -3 \\
-3 & 22 & 13
\end{array}\right]
$$

Example

The eigenvector matrix is

$$
\boldsymbol{\Psi}=\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]
$$

the matrix of modal masses is

$$
\boldsymbol{M}^{\star}=\boldsymbol{\Psi}^{\top} \boldsymbol{M} \boldsymbol{\Psi}=\mathfrak{m}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

the matrix of the non normalized modal partecipation coefficients is

Giacomo Boffi

Derived Ritz Vectors
Numerical

$$
\mathbf{L}=\boldsymbol{\Psi}^{\top} \mathbf{M E}=\mathbf{m}\left[\begin{array}{ccc}
-\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{5}{16} & \frac{11}{8} & \frac{5}{16}
\end{array}\right]
$$

and, finally, the matrix of modal partecipation factors,

$$
\boldsymbol{\Gamma}=\left(\boldsymbol{M}^{\star}\right)^{-1} \mathbf{L}=\left[\begin{array}{ccc}
-\frac{1}{4} & 0 & \frac{1}{4} \\
\frac{5}{32} & \frac{11}{16} & \frac{5}{32}
\end{array}\right]
$$

Example

Denoting with $D_{i j}=D_{i j}(t)$ the response function for mode i due to ground excitation $\ddot{\chi}_{\mathrm{gj}}$, the response can be written

$$
\begin{aligned}
x & =\binom{\psi_{11}\left(-\frac{1}{4} D_{11}+\frac{1}{4} D_{13}\right)+\psi_{12}\left(\frac{5}{32} D_{21}+\frac{5}{32} D_{23}+\frac{11}{16} D_{22}\right)}{\psi_{21}\left(-\frac{1}{4} D_{11}+\frac{1}{4} D_{13}\right)+\psi_{22}\left(\frac{5}{32} D_{21}+\frac{5}{32} D_{23}+\frac{11}{16} \mathrm{D}_{22}\right)} \\
& =\binom{-\frac{1}{4} \mathrm{D}_{13}+\frac{1}{4} \mathrm{D}_{11}+\frac{5}{32} \mathrm{D}_{21}+\frac{5}{32} \mathrm{D}_{23}+\frac{11}{16} \mathrm{D}_{22}}{-\frac{1}{4} \mathrm{D}_{11}+\frac{1}{4} \mathrm{D}_{13}+\frac{5}{32} \mathrm{D}_{21}+\frac{5}{32} \mathrm{D}_{23}+\frac{11}{16} \mathrm{D}_{22}} .
\end{aligned}
$$

