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Intro

Discrete models

Until now the dynamical behaviour of structures has been modeled
using discrete degrees of freedom, as in the Finite Element Method
procedure, and in many cases we have found that we are able to
reduce the number of dynamical degrees of freedom using the static
condensation procedure (multistory buildings are an excellent
example of structures for which a few dynamical degrees of freedom
can describe the dynamical response).
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Intro

Continuous models

For different type of structures (e.g., bridges, chimneys), a lumped
mass model is not an option. While a FE model is always
appropriate, there is no apparent way of lumping the structural
masses in a way that is obviously correct, and a great number of
degrees of freeedom must be retained in the dynamic analysis.

An alternative to detailed FE models is deriving the equation of
motion, in terms of partial derivatives differential equation, directly

for the continuous systems.

Continuous
Systems, Infinite
Degrees of
Freedom

Giacomo Boffi

Continous
Systems

Continuous Systems

There are many different continuous systems whose dynamics are
approachable with the instruments of classical mechanics,

>

v

>

>

>

taught strings,
axially loaded rods,
beams in flexure,
plates and shells,
3D solids.
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In the following, we will focus our interest on beams in flexure.

EoM for an undamped beam

X m(x), EJ(x)

X
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At the left, a straight beam with characteristic

depending on position x: m = m(x) and

EJ = EJ(x); with the signs conventions for
displacements, accelerations, forces and
bending moments reported left, the equation of
vertical equilibrium for an infinitesimal slice of

beam is

Vo ov+ Y £ max 2

0x

Rearranging and simplifying dx,

v _ o
ox ot

— p(x, t)dx =0.
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Equation of motion, 2 Continuous
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The rotational equilibrium, neglecting rotational inertia and
simplifying dx is

oM
aX B ’ Equation of
motion
Deriving with respect to x both members of the rotational Eorhauske
T . T Free Vibrations
equilibrium equation, it is Eigenpais of a
Othzr Boundary
Conditions
oV °M Mode
P— 72 Ortlnodgonality
Forced Response
aX aX Eartlnqual(ep
Response
Substituting in the equation of vertical equilibrium and rearranging
( )62u 2M (x.1)
mx)=— — —5 = p(x,
otz dx?
. . -
Equation of motion, 3 Syre o

Degrees of
Freedom

Using the moment-curvature relationship,

0%u
2
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ox
and substituting in the equation above we have the equation of
dynamic equilibrium
0%u n 02
0t2  0x2

M=—EJ
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|:EJ(X)
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Partial Derivatives Differential Equation Rormra
In this formulation of the equation of equilibrium we have
» one equation of equilibrium
» one unknown, u(x,t).

It is a partial derivatives differential equation because we have the derivatives of
u with respect to x and t simultaneously in the same equation.

Effective Earthquake Loading o ontinmes.
egrees of
DFriedom

If our continuous structure is subjected to earthquake excitation, we Giacomo Boffi

will write, as usual, urot = u(x, t) + ug(t) and, consequently,

itoT = i(x, t) + ijg(t)

Equation of
motion

. . . Earthquak
and, using the usual considerations, ._ii'asﬂ,';: <
Free Vibrations

Eigenpairs of a
Uniform Beam

Pef(x, t) = —m(x) Ug(t)- Sittey By

Mode
Orthogonality

In pefr we have a separation of variables: in the case of earthquake G
excitation all the considerations we have done on expressing the e
response in terms of static modal responses and pseudo/acceleration

response will be applicable.

Only a word of caution, in every case we must consider the

component of earthquake acceleration parallel to the transverse

motion of the beam.




Free Vibrations

For free vibrations, p(x, t) = 0 and the equation of equilibrium is

0%u  0? 0%u

Using separation of variables, with the following notations,

0 3]
ulxt) = q(t)b(x), 5 = db, 5 =’

etc for higher order derivatives, we have

1

m(x)d(t)d(x) + q(t) [EJ(x)d" (x)]” =0.

Continuous
Systems, Infinite
Degrees of
Freedom

Giacomo Boffi

Equation of
motion
Earthquake
Loading

Free Vibrations
Eigenpairs of a
Uniform Beam
Other Boundary
Conditions
Mode
Orthogonality
Forced Response
Earthquake
Response

Free Vibrations, 2

Dividing both terms in

"

m(x)4(t)dp(x) + q(t) [EJ(x)9" (x)]" = 0.

by m(x)u(x, t) = m(x)q(t)d(x) and rearranging, we have

gt m(x)o(x)

g(t) [EJ(X)CD”(X)]".

The left member is a function of time only, the right member a
function of position only, and they are equal... this is possible if and
only if both terms are constant, let's name this constant w? and

write

G(t) _ [EJ)" ()" 5

— = = w°,

q(t) m(x)d(x)
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Free Vibrations, 3

From the previous equations we can derive the following two

§+w?q=0
[EJ(x)0"(x)]" = w?m(x)d(x)

The first equation, § + w?q = 0, has the homogeneous integral

q(t) = Asin wt + Bcos wt
so that our free vibration solution is

u(x, t) = d(x) (Asinwt + Bcos wt),

the free vibration shape ¢(x) will be modulated by a harmonic

function of time.

To find something about w's and ¢'s (that is, the eigenvalues and

the eigenfunctions of our problem), we have to introduce an
important simplification.
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Eigenpairs of a uniform beam

With EJ = const. and m = const., we have from the second equation in previous
slide,
EJO"Y — w?md =0,

with p* = ©2m it i

OV — B =0
a differential equation of 4" order with constant coefficients.
Substituting ¢ = exp st and simplyfing,

st —p*=0
the roots of the associated polynomial are

s1=P, o=—P, s3=1iP, 52 =—iP
and the general integral is

d(x) = AsinBx + Bcos Bx + Csinh Bx + D cosh fx
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Constants of Integration

For a uniform beam in free vibration, the general integral is
&(x) = Asin Bx + B cos Bx + Csinh Bx + D cosh fx

In this expression we see 5 parameters, the 4 constants of integration and the
wave number (3 (further consideration shows that the constants can be arbitrarily
scaled).

In general for the transverse motion of a segment of beam supported at the
extremes we can write exactly 4 equations expressing boundary conditions, either
from kinematc or static considerations.

All these boundary conditions

> lead to linear, homogeneous equation where

> the coefficients of the equations depend on the parameter {3.
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Eigenvalues and eigenfunctions

Imposing the boundary conditions give a homogeneous linear system
with coefficients depending on 3, hence:

> a non trivial solution is possible only for particular values of {3,
for which the determinant of the matrix of cofficients is equal to
zero and

> the constants are known within a proportionality factor.
In the case of MDOF systems, the determinantal equation is an
algebraic equation of order N, giving exactly N eigenvalues, now the

equation to be solved is a trascendental equation (examples from the
next slide), with an infinity of solutions.
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Simply supported beam

Consider a simply supported uniform beam of lenght L,
displacements at both ends must be zero, as well as the bending
moments:
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d)(O) =B+D=0, (b(L) =0, Equation of
—EJ$"(0) = B2EJ(B — D) =0, —EJ$"(L) =0. e
Eig_enpairBseo:ma
The conditions for the left support require that B =D =0 L:sa?;é:r:l:;suppoma
Now, we can write the equations for the right support as Sqlever Beam
Conditions
$(L) = AsinBL+ Csinh pL =0
—EJ®"(L) = B2EJ(Asin BL — Csinh BL) = 0 Respome
or
+sinBL +sinhBL] [A] [0
+sinpl —sinhpL| 1 Cf T of"
Simply supported beam, 2 oyeominuoye
Degrees of
Freedom
For a SImply Supported + Sin [.))L +Sinh BL A o 0 Giacomo Boffi
beam we have +sinBL —sinhpL| 1 C[ — \0f"

The determinant is —2sin B Lsinh L, equating to zero with the
understanding that sinh 3L #£ 0 if 3 #£ 0 results in

sinL =0.
All positive 3 solutions are given by
BL=nm
with n =1, ..., 00. We have an infinity of eigenvalues,

e g [E e [ ET
anLandwnfB m—nT[ 3

and of eigenfunctions

. TIX . 21X . 3mx
cbl:smT, d)zzsmT, d>3:smT,---
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Cantilever beam

For x = 0, we have zero displacement and zero rotation
¢(0)=B+D =0, $'(0) =R(A+€) =0,
for x = L, both bending moment and shear must be zero
—EJ$"(L) =0, —EJ"' (L) =0.

Substituting the expression of the general integral, with
D = —B, € = —A from the left end equations, in the right end
equations and simplifying

sinhBL+sinBL coshPBL+cosBL| [A] [0
coshBL+cosBL sinhBL—sinBL| B[  |0f°
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Cantilever beam, 2

Imposing a zero determinant results in

(cosh? BL —sinh? BL) + (sin® BL + cos? BL) + 2 cos BLcosh BL =
=2(14+cosPBLcoshBL) =0

Rearranging, cos L = —(cosh BL)~! and plotting these functions on
the same graph

_o 1 1] . . ' n ; n
: \

-0.2 ; : : -

0.3 b 1 cos(BL) - e -1‘/c‘osh(BL) --------- -

0.5 1.5 2.5m 3.5 4.5m

itis 1L =1.8751 and BoL = 4.6941, while for n = 3,4, ... with
good approximation it is B,L &~ 2217,
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Cantilever beam, 3
Eigenvectors are given by

d),,(X) =G, [(cosh 3 nx—cos an)—% (sinh B ,x—sin an)]

T
1L n=1 — 2 — 3

o3 7
N A

0 0.25 0.5 0.75 1

Above, in abscissas x/L and in ordinates ¢,(x) for the first 5 modes

of vibration of the cantilever beam.
n 1 2 3 4 5

Bnl 1.8751 4.6941 7.8548 10.9962 =~ 4.5m
w ’"E—LJA 3616 22.031 61.70 120.9
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Other Boundary Conditions

It is possible that

» the beam is supported not by a fixed constraint but by a spring,
either extensional or flexural,

> the beam at its end supports a lumped mass, with inertia and
possibly rotatory inertia.
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Consider the right end, x = L, supported by an extensional spring k.
An infinitesimal slice of beam is subjected to two discrete forces, the
shear V(L,t) = —EJ$""(L)q(t) and the spring reaction, S

ku(L, t) = k¢ (L)q(t). With our sign conventions, the equilibrium is Eondhrg

Free Vibrations

written —V — ku = 0 or, simplifying the time dependency, Eigenpairs of a
Other Boundary
EJ EJ f/landditien:
)= =21 = =2 (BL 3f LA B,CD rthogonality
G(L) = 0" (L) = 75 (BLIPF(B ) s

Response

where we have shown that the right member depends only on L.

The equation of equilibrium is an homogeneous equation in A, B, C
and D.

Supported Mass Continuous

Systems, Infinite
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The beam end supports a lumped mass M and it is subjected to

shear V/(L,t) and an inertial force, fi = —Mazg(tévt)

Considering that in free vibrations we have harmonic time
dependency, it is

Giacomo Boffi

Equation of
motion

Earthquake

9%q(t) EJ Eonchas
fi=-Mo(L)— 5 = Mw? d(L)q(t) = Mﬁ‘l;d)(L)Cl(t)- e Vibraiens
il
and the equation of equilibrium is, simplifying EJ and the time f,,‘f,";""“’r
dependency S T
M _, e
BAf()+ B () =0
mL
eventually dividing by 33 we have an homegeneous equation in A ...
as well,
M
fl.)+ —BLb(...) =0/
mL
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We will demonstrate mode orhogonality for a restricted set of of
boundary conditions, i.e., disregarding elastic supports and supported

masses. In the beginning we have, for n =r, Equation of
I , E:;zﬁz;:“_
[EJ(x) b/ (x)] " = wim(x) b, (x). Aol

Uniform Beam
. i Othzr Boundary
Premultiply both members by ¢4(x) and integrate over the length of 2™
. Orthogonality
the beam gives you i
Earthquake
Response

"

L L
L(ps(xJ (EJ()$ ()] dx—wfjo%(x)m(xwr(x)dx.




Mode Orthogonality, 2

The left member can be integrated by parts, two times, as in

L
L bs(x) [EJ(x)d) (x)] " dx =

L L

(050 [ES007 (]| = [91x) EJx)07 ()] g+

L
|, o2 0Es007 ) ax
but the terms in brackets are always zero, the first being the product
of end displacement by end shear, the second the product of end
rotation by bending moment, and for fixed constraints or free end
one of the two terms must be zero. So it is

L L
| or00Es ;’(x)dx=wfjo¢s(x)m(x)¢,(x)dx.

0
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Mode Orthogonality, 3

We write the last equation exchanging the roles of r and s and
subtract from the original,

L L
J Y (X)EJ(x)d] (x) dx —J V(X)EJ(x)bl (x) dx =
0 0

L

L
wEJ s () m(x) by (x) dx — wij &, (x)m(x) s (x) dx.
0

0

This obviously can be simplyfied giving

L
(w? — w§>L &, (x)m(x)s(x) dx = 0

implying that, for w? # w? the modes are orthogonal with respect
to the mass distribution, [ ¢sd, mdx = &,sm;,.
It is then easy to show that [ ¢/ EJdx = &smyw
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Forced dynamic response

With u(x, t) = Y 1° dm(x)gm(t), the equation of motion can be
written
> mx)dm(x)dm(t) + > [EJx)dm(x)]” am(t) = plx, t)
1 1

premultiplying by ¢, and integrating each sum and the loading term

oo

L
ZJ Gn(X)M(X)Pm(x)Gm(t) dx+
— Jo
o L

L
3 | 0a0) [ES00050] " aml ) dx = | alxIplx,2)

1 J0
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Forced dynamic response, 2

By the orthogonality of the eigenfunctions this can be simplyfied to

MpGn(t) + knqn(t) = pa(t), n=12...,00
with
L L ”
mp = J bnmdp dx, kn = J bn [EJd),/{] dx,
0 0

L
and pult) = Lq:np(x, ) dx.

For free ends and/or fixed supports, k, = fécl),’{EJd),’,’ dx.
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Earthquake response
Consider an effective earthquake load, p(x, t) = m(x)iig(t), with

L
Ln:J' d),,(x)m(x)dx, rnziy
0

the modal equation of motion can be written (with an obvious
generalisation)

Gn +2wnCngn + w%q = _rnug(t)-

The modal response, analogously to the case of discrete models, is

the product of the modal partecipation factor and the
pseudo-displacement response,

qn(t) = TaDp(t).
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Earthquake response, 2

Modal contributions can be computed directly, e.g.

un(x, t) = Thdn(x)Dy(t),
Ma(x, t) = =T EJ(x) by, (x) Da(t),

or can be computed from the equivalent static forces,

fu(x, t) = [EJ(x)u(x, t)"]"".
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Earthquake response, 3

The modal contributions to equiv. static forces are
fon(x, t) = T [EJ(x)dn(x)"]" Dalt),

that, because it is

" = w?m(x)d(x)

[EJ(x)" (x)]

can be written in terms of the mass distribution and of the
pseudo-acceleration response A,(t) = w2D,(t)

fsn(Xy t) = rnm(X)d)n(X)w%Dn(t) = rnm(x)d)n(X)An(t)-
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Earthquake response, 4

The effective load is proportional to the mass distribution, and we
can do a modal mass decomposition in the same way that we had for
MDOF systems, m(x) = >_ ra(x) = >_ Tom(x)dn(x)

o U A W N R
i
|
!
I
\

Above, the modal mass decomposition r, = I',md,,for the first six
modes of a uniform cantilever, in abscissa x/L.

Continuous
Systems, Infinite
Degrees of
Freedom

Giacomo Boffi

Equation of
motion
Earthquake
Loading

Free Vibrations
Eigenpairs of a
Uniform Beam
Other Boundary
Conditions
Mode
Orthogonality
Forced Response
Earthquake
Response
Example

EQ example, cantilever

For a cantilever, it is possible to derive explicitly some response quantities,
V(x), Ve, M(x), Mg,

that is, the shear force and the base shear force, the bending moment and the
base bending moment.

L L
VEt (x) =J ro(s)ds, Ve = J ro(s)ds = T,Lp = M,

X 0

L L

M (x) = J ra(s)(s — x)ds, Mg = J sra(s)ds = M h.
X 0

M is the partecipating modal mass and expresses the partecipation of the

different modes to the base shear, it is > M} = fém(x) dx.

M} h expresses the modal partecipation to base moment, h}; is the height where

the partecipating modal mass M} must be placed so that its effects on the base

are the same of the static modal forces effects, or M} is the resultant of s.m.f.

and h7 is the position of this resultant.
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EQ example, cantilever, 2

Starting with the definition of total mass and operating a chain of
substitutions,

L L

m(x)dx = ZJ ra(x) dx

Mot = J
0

0

L L
= 3 | romxn(x)ax = 37 | (bl dx
= Tln=) M,

we have demonstrated that the sum of the partecipating modal mass
is equal to the total mass.

The demonstration that Mg tot = Y_ M} h’ is similar and is left as
an exercise.
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EQ example, cantilever, 3

For the first 6 modes of a uniform cantilever,

n 'Cn mp I—‘n VB,n hn MB,n
1 0.391496 0.250 1.565984 0.613076 0.726477 0.445386
2 -0.216968 0.250 -0.867872 0.188300 0.209171 0.039387
3 0.127213 0.250 0.508851 0.064732 0.127410 0.008248
4 -0.090949 0.250 -0.363796 0.033087 0.090943 0.003009
5 0.070735 0.250 0.282942 0.020014 0.070736 0.001416
6 -0.057875 0.250 -0.231498 0.013398 0.057875 0.000775
7 0.048971 0.250 0.195883 0.009593 0.048971 0.000470
8 -0.042441 0.250 -0.169765 0.007205 0.042442 0.000306

The convergence for MB is faster than for Vg, because the latter is proportional
ton an higher derivative of displacements.
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