Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

http://intranet.dica.polimi.it/people/boffi-giacomo

Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano

April 21, 2016

Continuous
Systems, Infinite
Degrees of
Freedom

Giacomo Boffi

ontinous ystems

Beams in Flexure

Outline

Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

Continous Systems

Beams in Flexure

Continous Systems

Beams in Flexure

Equation of motion Earthquake Loading Free Vibrations Eigenpairs of a Uniform Beam Simply Supported Beam Cantilever Beam Other Boundary Conditions Mode Orthogonality Forced Response Earthquake Response Example

Beams in Flexure

Discrete models

Until now the dynamical behaviour of structures has been modeled using discrete degrees of freedom, as in the Finite Element Method procedure, and in many cases we have found that we are able to reduce the number of *dynamical degrees of freedom* using the static condensation procedure (multistory buildings are an excellent example of structures for which a few dynamical degrees of freedom can describe the dynamical response).

Giacomo Boffi

Continous Systems

Beams in Flexure

Continuous models

For different type of structures (e.g., bridges, chimneys), a lumped mass model is not an option. While a *FE* model is always appropriate, there is no apparent way of lumping the structural masses in a way that is obviously correct, and a great number of degrees of freeedom must be retained in the dynamic analysis. An alternative to detailed *FE* models is deriving the equation of motion, in terms of partial derivatives differential equation, directly for the continuous systems.

There are many different continuous systems whose dynamics are approachable with the instruments of classical mechanics,

- taught strings,
- axially loaded rods,
- beams in flexure,
- plates and shells,
- ▶ 3D solids.

In the following, we will focus our interest on beams in flexure.

EoM for an undamped beam



At the left, a straight beam with characteristic depending on position x: m=m(x) and EJ=EJ(x); with the signs conventions for displacements, accelerations, forces and bending moments reported left, the equation of vertical equilibrium for an infinitesimal slice of beam is

$$V - (V + \frac{\partial V}{\partial x} dx) + m dx \frac{\partial^2 u}{\partial t^2} - p(x, t) dx = 0.$$

Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

ontinous ystems

Beams in Flex

Equation of motion

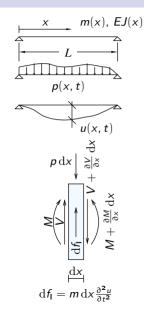
Earthquake Loading Free Vibrations Eigenpairs of a

Eigenpairs of a Uniform Beam Other Boundary Conditions

Conditions
Mode
Orthogonality
Forced Response

Earthquake Response

EoM for an undamped beam



At the left, a straight beam with characteristic depending on position x: m = m(x) and EJ = EJ(x); with the signs conventions for displacements, accelerations, forces and bending moments reported left, the equation of vertical equilibrium for an infinitesimal slice of beam is

$$V - (V + \frac{\partial V}{\partial x} dx) + m dx \frac{\partial^2 u}{\partial t^2} - p(x, t) dx = 0.$$

Rearranging and simplifying dx,

$$\frac{\partial V}{\partial x} = m \frac{\partial^2 u}{\partial t^2} - p(x, t).$$

Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

Continous

Beams in Fiex

Equation of motion

Earthquake Loading Free Vibrations Eigenpairs of a Uniform Beam Other Boundary

Conditions
Mode
Orthogonality
Forced Response
Earthquake

Response

The rotational equilibrium, neglecting rotational inertia and simplifying $\mathrm{d}x$ is

$$\frac{\partial M}{\partial x} = V.$$

Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

Continous Systems

Beams in F

Loading

Response

Equation of motion Earthquake

Free Vibrations
Eigenpairs of a
Uniform Beam
Other Boundary
Conditions
Mode
Orthogonality
Forced Response
Earthquake

The rotational equilibrium, neglecting rotational inertia and simplifying $\mathrm{d}x$ is

$$\frac{\partial M}{\partial x} = V.$$

Deriving with respect to x both members of the rotational equilibrium equation, it is

$$\frac{\partial V}{\partial x} = \frac{\partial^2 M}{\partial x^2}$$

Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

Continous Systems

Beams in

Equation of motion

Loading
Free Vibrations
Eigenpairs of a
Uniform Beam
Other Boundary
Conditions
Mode
Orthogonality
Forced Response
Earthquake

Response

Continuous Systems, Infinite Degrees of Freedom

The rotational equilibrium, neglecting rotational inertia and simplifying dx is

$$\frac{\partial M}{\partial x} = V.$$

Deriving with respect to x both members of the rotational equilibrium equation, it is

$$\frac{\partial V}{\partial x} = \frac{\partial^2 M}{\partial x^2}$$

Substituting in the equation of vertical equilibrium and rearranging

$$m(x)\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 M}{\partial x^2} = p(x, t)$$

Giacomo Boffi

Continous Systems

Beams in

Equation of motion Earthquake

Loading
Free Vibrations
Eigenpairs of a
Uniform Beam
Other Boundary
Conditions
Mode
Orthogonality
Forced Response
Earthquake
Response

Using the moment-curvature relationship,

$$M = -EJ\frac{\partial^2 u}{\partial x^2}$$

and substituting in the equation above we have the equation of dynamic equilibrium

$$m(x)\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2}{\partial x^2} \left[EJ(x)\frac{\partial^2 u}{\partial x^2} \right] = p(x, t).$$

Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

Continous Systems

Equation of

Equation of motion

Loading
Free Vibrations
Eigenpairs of a
Uniform Beam
Other Boundary
Conditions
Mode
Orthogonality
Forced Response

Earthquake Response

Using the moment-curvature relationship,

$$M = -EJ\frac{\partial^2 u}{\partial x^2}$$

and substituting in the equation above we have the equation of dynamic equilibrium

$$m(x)\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2}{\partial x^2}\left[EJ(x)\frac{\partial^2 u}{\partial x^2}\right] = p(x, t).$$

Partial Derivatives Differential Equation

In this formulation of the equation of equilibrium we have

- one equation of equilibrium
- ightharpoonup one unknown, u(x, t).

It is a partial derivatives differential equation because we have the derivatives of u with respect to x and t simultaneously in the same equation.

Continuous
Systems, Infinite
Degrees of
Freedom

Giacomo Boffi

Continous Systems

Beams in Flexus

Equation of motion Earthquake

Loading
Free Vibrations
Eigenpairs of a
Uniform Beam
Other Boundary
Conditions
Mode
Orthogonality
Forced Response

Earthquake

Response

Effective Earthquake Loading

If our continuous structure is subjected to earthquake excitation, we will write, as usual, $u_{TOT} = u(x, t) + u_g(t)$ and, consequently,

$$\ddot{u}_{\mathsf{TOT}} = \ddot{u}(x, t) + \ddot{u}_{\mathsf{g}}(t)$$

and, using the usual considerations,

$$p_{\text{eff}}(x, t) = -m(x)\ddot{u}_{g}(t).$$

Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

Continous Systems

Beams in Flex

Equation of motion

Loading
Free Vibrations
Eigenpairs of a

Uniform Beam
Other Boundary
Conditions
Mode
Orthogonality

Forced Response Earthquake Response

Effective Earthquake Loading

Continuous Systems, Infinite Degrees of Freedom

If our continuous structure is subjected to earthquake excitation, we will write, as usual, $u_{TOT} = u(x, t) + u_{g}(t)$ and, consequently,

$$\ddot{u}_{\mathsf{TOT}} = \ddot{u}(x, t) + \ddot{u}_{\mathsf{g}}(t)$$

and, using the usual considerations,

$$p_{\text{eff}}(x, t) = -m(x)\ddot{u}_{g}(t).$$

In $p_{\rm eff}$ we have a separation of variables: in the case of earthquake excitation all the considerations we have done on expressing the response in terms of static modal responses and pseudo/acceleration response will be applicable.

Giacomo Boffi

ontinous ystems

Beams in Flexure

Equation of motion

Earthquake Loading

Eigenpairs of a Uniform Beam Other Boundary Conditions Mode Orthogonality Forced Response Earthquake Response

Continuous
Systems, Infinite
Degrees of
Freedom

Giacomo Boffi

ontinous ystems

Beams in Flexure

Equation of motion

Earthquake Loading

Eigenpairs of a Uniform Beam Other Boundary Conditions Mode

Mode Orthogonality Forced Response

Earthquake Response

If our continuous structure is subjected to earthquake excitation, we will write, as usual, $u_{TOT} = u(x, t) + u_{\sigma}(t)$ and, consequently,

$$\ddot{u}_{TOT} = \ddot{u}(x, t) + \ddot{u}_{\sigma}(t)$$

and, using the usual considerations,

$$p_{\text{eff}}(x, t) = -m(x)\ddot{u}_{g}(t).$$

In $p_{\rm eff}$ we have a separation of variables: in the case of earthquake excitation all the considerations we have done on expressing the response in terms of static modal responses and pseudo/acceleration response will be applicable.

Only a word of caution, in every case we must consider the component of earthquake acceleration *parallel* to the transverse motion of the beam.

For free vibrations, $p(x, t) \equiv 0$ and the equation of equilibrium is

$$m(x)\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2}{\partial x^2} \left[EJ(x) \frac{\partial^2 u}{\partial x^2} \right] = 0.$$

Using separation of variables, with the following notations,

$$u(x,t) = q(t)\phi(x), \ \frac{\partial u}{\partial t} = \dot{q}\phi, \ \frac{\partial u}{\partial x} = q\phi'$$

etc for higher order derivatives, we have

$$m(x)\ddot{q}(t)\phi(x) + q(t)\left[EJ(x)\phi''(x)\right]'' = 0.$$

Dividing both terms in

$$m(x)\ddot{q}(t)\phi(x) + q(t)\left[EJ(x)\phi''(x)\right]'' = 0.$$

by $m(x)u(x,t)=m(x)q(t)\varphi(x)$ and rearranging, we have

$$-\frac{\ddot{q}(t)}{q(t)} = \frac{\left[EJ(x)\varphi''(x)\right]''}{m(x)\varphi(x)}.$$

The left member is a function of time only, the right member a function of position only, and they are equal...

Dividing both terms in

$$m(x)\ddot{q}(t)\phi(x) + q(t)\left[EJ(x)\phi''(x)\right]'' = 0.$$

by $m(x)u(x,t)=m(x)q(t)\varphi(x)$ and rearranging, we have

$$-\frac{\ddot{q}(t)}{q(t)} = \frac{\left[EJ(x)\Phi''(x)\right]''}{m(x)\Phi(x)}.$$

The left member is a function of time only, the right member a function of position only, and they are equal... this is possible if and only if both terms are constant, let's name this constant ω^2 and write

$$-\frac{\ddot{q}(t)}{q(t)} = \frac{\left[EJ(x)\phi''(x)\right]''}{m(x)\phi(x)} = \omega^2,$$

Free Vibrations, 3

From the previous equations we can derive the following two

$$\ddot{q} + \omega^2 q = 0$$
$$\left[EJ(x) \phi''(x) \right]'' = \omega^2 m(x) \phi(x)$$

The first equation, $\ddot{q} + \omega^2 q = 0$, has the homogeneous integral

$$q(t) = A\sin\omega t + B\cos\omega t$$

so that our free vibration solution is

$$u(x, t) = \phi(x) (A \sin \omega t + B \cos \omega t),$$

the free vibration shape $\phi(x)$ will be modulated by a harmonic function of time.

Continuous
Systems, Infinite
Degrees of
Freedom

Giacomo Boffi

Continous Systems

Beams in Flexure

motion Earthquake Loading

Free Vibrations

Eigenpairs of a Uniform Beam Other Boundary Conditions Mode Orthogonality

Forced Response
Earthquake
Response

function of time.

important simplification.

From the previous equations we can derive the following two

 $[EJ(x)\phi''(x)]'' = \omega^2 m(x)\phi(x)$

 $a(t) = A \sin \omega t + B \cos \omega t$

 $u(x, t) = \phi(x) (A \sin \omega t + B \cos \omega t)$.

the free vibration shape $\phi(x)$ will be modulated by a harmonic

the eigenfunctions of our problem), we have to introduce an

To find something about ω 's and ϕ 's (that is, the eigenvalues and

The first equation, $\ddot{q} + \omega^2 q = 0$, has the homogeneous integral

 $\ddot{a} + \omega^2 a = 0$

so that our free vibration solution is

Continuous

Mode

Eigenpairs of a uniform beam

With EJ = const. and m = const., we have from the second equation in previous slide.

$$EJ\phi^{IV}-\omega^2m\phi=0,$$

with $\beta^4 = \frac{\omega^2 m}{EI}$ it is

$$\phi^{IV} - \beta^4 \phi = 0$$

a differential equation of 4th order with constant coefficients.

Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

Continous Systems

Beams in Fle

motion Earthquake Loading Free Vibrations

Eigenpairs of a Uniform Beam Simply Supported

Beam Cantilever Beam Other Boundary

Mode Orthogonality Forced Response Earthquake Response

Eigenpairs of a uniform beam

Continuous Systems, Infinite Degrees of Freedom

With EJ = const. and m = const., we have from the second equation in previous slide.

$$EJ\phi^{IV}-\omega^2m\phi=0$$
,

with $\beta^4 = \frac{\omega^2 m}{EJ}$ it is

$$\varphi^{IV} - \beta^4 \varphi = 0$$

a differential equation of 4^{th} order with constant coefficients. Substituting $\Phi = \exp st$ and simplyfing.

$$s^4 - \beta^4 = 0,$$

the roots of the associated polynomial are

$$s_1 = \beta$$
, $s_2 = -\beta$, $s_3 = i\beta$, $s_4 = -i\beta$

and the general integral is

$$\phi(x) = A \sin \beta x + B \cos \beta x + C \sinh \beta x + D \cosh \beta x$$

Giacomo Boffi

Continous Systems

Beams in Flexure

Equation of motion Earthquake Loading Free Vibrations

Eigenpairs of a Uniform Beam Simply Supported

Beam
Cantilever Beam
Other Boundary
Conditions
Mode
Orthogonality

Forced Response Earthquake Response

Constants of Integration

Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

Equation of motion Earthquake

Loading Free Vibrations Eigenpairs of a

Uniform Beam Simply Supported

Beam

Cantilever Beam Other Boundary Conditions

Mode Orthogonality Forced Response Earthquake Response

For a uniform beam in free vibration, the general integral is

$$\phi(x) = A \sin \beta x + B \cos \beta x + C \sinh \beta x + D \cosh \beta x$$

In this expression we see 5 parameters, the 4 constants of integration and the wave number β (further consideration shows that the constants can be arbitrarily scaled).

In general for the transverse motion of a segment of beam supported at the extremes we can write exactly 4 equations expressing boundary conditions, either from kinemate or static considerations.

Earthquake Loading Free Vibrations Eigenpairs of a

Uniform Beam

Simply Supported Beam

Cantilever Beam Other Boundary Conditions

Conditions
Mode
Orthogonality
Forced Response

Earthquake Response

For a uniform beam in free vibration, the general integral is

$$\phi(x) = A \sin \beta x + B \cos \beta x + C \sinh \beta x + D \cosh \beta x$$

In this expression we see 5 parameters, the 4 constants of integration and the wave number β (further consideration shows that the constants can be arbitrarily scaled).

In general for the transverse motion of a segment of beam supported at the extremes we can write exactly 4 equations expressing boundary conditions, either from kinematc or static considerations.

All these boundary conditions

- lead to linear, homogeneous equation where
- the coefficients of the equations depend on the parameter β .

Eigenvalues and eigenfunctions

Continuous
Systems, Infinite
Degrees of
Freedom

Giacomo Boffi

ontinous ystems

Beams in Flexure

Equation of motion Earthquake Loading Free Vibrations

Eigenpairs of a Uniform Beam Simply Supported

Beam
Cantilever Beam

Other Boundary Conditions Mode Orthogonality

Orthogonality
Forced Response
Earthquake
Response

Imposing the boundary conditions give a homogeneous linear system with coefficients depending on β , hence:

- ightharpoonup a non trivial solution is possible only for particular values of β , for which the determinant of the matrix of cofficients is equal to zero and
- ▶ the constants are known within a proportionality factor.

Giacomo Boffi

ontinous ystems

Beams in Flexure

Equation of motion Earthquake Loading Free Vibrations Eigenpairs of a

Eigenpairs of a Uniform Beam Simply Supported

Beam Cantilever Beam Other Boundary Conditions

Conditions
Mode
Orthogonality
Forced Response
Earthquake

Response

Imposing the boundary conditions give a homogeneous linear system with coefficients depending on β , hence:

- ightharpoonup a non trivial solution is possible only for particular values of β , for which the determinant of the matrix of cofficients is equal to zero and
- ▶ the constants are known within a proportionality factor.

In the case of MDOF systems, the determinantal equation is an algebraic equation of order N, giving exactly N eigenvalues, now the equation to be solved is a trascendental equation (examples from the next slide), with an infinity of solutions.

Simply supported beam

Consider a simply supported uniform beam of lenght L, displacements at both ends must be zero, as well as the bending moments:

$$\begin{split} &\varphi(0)=\mathcal{B}+\mathcal{D}=0, &\varphi(L)=0, \\ &-EJ\varphi''(0)=\beta^2EJ(\mathcal{B}-\mathcal{D})=0, &-EJ\varphi''(L)=0. \end{split}$$

The conditions for the left support require that $\mathcal{B}=\mathcal{D}=0$

Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

Continous Systems

Beams in Flexu

Equation of motion
Earthquake
Loading
Free Vibrations

Eigenpairs of a Uniform Beam

Simply Supported Beam

Cantilever Beam Other Boundary Conditions Mode Orthogonality Forced Response Earthquake Response

$$\phi(0) = \mathcal{B} + \mathcal{D} = 0.$$
 $\phi(L) = 0.$ Equation Equation (2)

 $-EJ\Phi''(L)=0$

The conditions for the left support require that
$$\mathcal{B}=\mathcal{D}=0$$

Now, we can write the equations for the right support as

 $-EJ\Phi''(0) = \beta^2 EJ(\beta - D) = 0$

 $\phi(L) = A \sin \beta L + C \sinh \beta L = 0$ $-EI\phi''(L) = \beta^2 EJ(A \sin \beta L - C \sinh \beta L) = 0$

$$\begin{bmatrix} +\sin\beta L & +\sinh\beta L \\ +\sin\beta L & -\sinh\beta L \end{bmatrix} \begin{Bmatrix} \mathcal{A} \\ \mathcal{C} \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}.$$

Giacomo Boffi

Continous Systems

Beams in Flexure

Equation of motion Earthquake Loading Free Vibrations Eigenpairs of a

Uniform Beam Simply Supported Beam

Cantilever Beam Other Boundary Conditions Mode Orthogonality

Earthquake

Response

Simply supported beam, 2

For a simply supported beam we have

$$\begin{bmatrix} +\sin\beta L & +\sinh\beta L \\ +\sin\beta L & -\sinh\beta L \end{bmatrix} \left\{ \begin{matrix} \mathcal{A} \\ \mathcal{C} \end{matrix} \right\} = \left\{ \begin{matrix} 0 \\ 0 \end{matrix} \right\}.$$

Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

Continous Systems

Beams in Flexure

Equation of motion Earthquake Loading Free Vibrations Eigenpairs of a Uniform Beam

Uniform Beam Simply Supported Beam

Cantilever Beam Other Boundary Conditions Mode Orthogonality Forced Response Earthquake Response

Simply supported beam, 2

For a simply supported beam we have

$$\begin{bmatrix} +\sin\beta L & +\sinh\beta L \\ +\sin\beta L & -\sinh\beta L \end{bmatrix} \begin{pmatrix} \mathcal{A} \\ \mathcal{C} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The determinant is $-2\sin\beta L\sinh\beta L$, equating to zero with the understanding that $\sinh\beta L\neq 0$ if $\beta\neq 0$ results in

$$\sin \beta L = 0$$
.

All positive β solutions are given by

$$\beta L = n\pi$$

with $n = 1, ..., \infty$. We have an infinity of eigenvalues,

$$\beta_n = \frac{n\pi}{L}$$
 and $\omega_n = \beta^2 \sqrt{\frac{EJ}{m}} = n^2 \pi^2 \sqrt{\frac{EJ}{mL^4}}$

and of eigenfunctions

$$\phi_1 = \sin \frac{\pi x}{L}$$
, $\phi_2 = \sin \frac{2\pi x}{L}$, $\phi_3 = \sin \frac{3\pi x}{L}$, ...

Continuous
Systems, Infinite
Degrees of
Freedom

Giacomo Boffi

ontinous ystems

Beams in Flex

Equation of motion

Loading
Free Vibrations
Eigenpairs of a

Uniform Beam
Simply Supported
Beam

Cantilever Beam
Other Boundary
Conditions
Mode
Orthogonality
Forced Response

Earthquake Response

Beam

For x = 0, we have zero displacement and zero rotation

$$\varphi(0)=\mathfrak{B}+\mathfrak{D}=0, \qquad \qquad \varphi'(0)=\beta(\mathcal{A}+\mathfrak{C})=0,$$

for x = L, both bending moment and shear must be zero

$$-EJ\varphi''(L)=0, -EJ\varphi'''(L)=0.$$

Substituting the expression of the general integral, with $\mathcal{D}=-\mathcal{B},\ \mathcal{C}=-\mathcal{A}$ from the left end equations, in the right end equations and simplifying

$$\begin{bmatrix} \sinh\beta L + \sin\beta L & \cosh\beta L + \cos\beta L \\ \cosh\beta L + \cos\beta L & \sinh\beta L - \sin\beta L \end{bmatrix} \begin{Bmatrix} \mathcal{A} \\ \mathcal{B} \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}.$$

Cantilever beam, 2

Imposing a zero determinant results in

$$(\cosh^2 \beta L - \sinh^2 \beta L) + (\sin^2 \beta L + \cos^2 \beta L) + 2\cos \beta L \cosh \beta L =$$

$$= 2(1 + \cos \beta L \cosh \beta L) = 0$$

Continuous
Systems, Infinite
Degrees of
Freedom

Giacomo Boffi

Continous Systems

Beams in Flexure

Equation of motion Earthquake Loading Free Vibrations Eigenpairs of a Uniform Beam Simply Supported Beam

Cantilever Beam
Other Boundary
Conditions
Mode
Orthogonality
Forced Response

Earthquake Response

Cantilever beam. 2

Continuous Systems, Infinite Degrees of Freedom

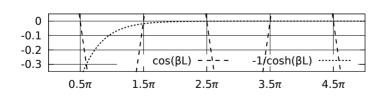
Imposing a zero determinant results in

$$\beta L \cosh \beta L =$$

$$(\cosh^2 \beta L - \sinh^2 \beta L) + (\sin^2 \beta L + \cos^2 \beta L) + 2\cos \beta L \cosh \beta L =$$

$$= 2(1 + \cos \beta L \cosh \beta L) = 0$$

Rearranging, $\cos \beta L = -(\cosh \beta L)^{-1}$ and plotting these functions on the same graph



it is $\beta_1 L = 1.8751$ and $\beta_2 L = 4.6941$, while for n = 3, 4, ... with good approximation it is $\beta_n L \approx \frac{2n-1}{2}\pi$.

Giacomo Boffi

Equation of motion

Earthquake Loading Free Vibrations Eigenpairs of a Uniform Beam

Simply Supported Beam Cantilever Beam Other Boundary

Conditions Mode Orthogonality Forced Response Earthquake

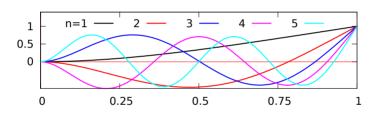
Response

Cantilever beam, 3

Continuous
Systems, Infinite
Degrees of
Freedom

Eigenvectors are given by

$$\varphi_n(x) = C_n \left[(\cosh \beta_n x - \cos \beta_n x) - \frac{\cosh \beta_n L + \cos \beta_n L}{\sinh \beta_n L + \sin \beta_n L} (\sinh \beta_n x - \sin \beta_n x) \right]$$



Above, in abscissas x/L and in ordinates $\phi_n(x)$ for the first 5 modes of vibration of the cantilever beam.

n 1 2 3 4 5
β_nL 1.8751 4.6941 7.8548 10.9962
$$\approx 4.5\pi$$

ω $\sqrt{\frac{mL^4}{EJ}}$ 3.516 22.031 61.70 120.9 ···

Giacomo Boffi

ntinous stems

Beams in Flexure

Equation of motion Earthquake

Loading
Free Vibrations
Eigenpairs of a
Uniform Beam
Simply Supported

Cantilever Beam Other Boundary Conditions

Beam

Response

Conditions

Mode
Orthogonality
Forced Response
Earthquake

Other Boundary Conditions

Continuous
Systems, Infinite
Degrees of
Freedom

Giacomo Boffi

Continous Systems

Beams in Flexure

Equation of motion Earthquake Loading Free Vibrations Eigenpairs of a

Other Boundary Conditions Mode Orthogonality

Orthogonality
Forced Response
Earthquake

It is possible that

- ▶ the beam is supported not by a fixed constraint but by a spring, either extensional or flexural,
- the beam at its end supports a lumped mass, with inertia and possibly rotatory inertia.

Continous Systems

Beams in Flexure
Equation of
motion

Earthquake Loading Free Vibrations Eigenpairs of a Uniform Beam

Other Boundary Conditions

Mode Orthogonality Forced Response Earthquake

Consider the right end, x=L, supported by an extensional spring k. An infinitesimal slice of beam is subjected to two discrete forces, the shear $V(L,t)=-EJ\varphi'''(L)q(t)$ and the spring reaction, $ku(L,t)=k\varphi(L)q(t)$. With our sign conventions, the equilibrium is written -V-ku=0 or, simplifying the time dependency,

$$\phi(L) = \frac{EJ}{k} \phi'''(L) = \frac{EJ}{kL^3} (\beta L)^3 f(\beta L; \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})$$

where we have shown that the right member depends only on βL . The equation of equilibrium is an homogeneous equation in $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D} .

dependency, it is

The beam end supports a lumped mass M and it is subjected to shear V(L,t) and an inertial force, $f_I = -M \frac{\partial^2 u(L,t)}{\partial t^2}$. Considering that in free vibrations we have harmonic time

 $f_I = -M\phi(L)\frac{\partial^2 q(t)}{\partial t^2} = M\omega^2 \phi(L)q(t) = M\beta^4 \frac{EJ}{m}\phi(L)q(t).$

and the equation of equilibrium is, simplifying EJ and the time dependency

$$\beta^3 f(...) + \frac{M}{mL} \beta^4 L \phi(...) = 0$$

eventually dividing by β^3 we have an homegeneous equation in $\mathcal{A}\dots$ as well,

$$f(...) + \frac{M}{mL}\beta L\varphi(...) = 0/$$

We will demonstrate mode orhogonality for a restricted set of of boundary conditions, i.e., disregarding elastic supports and supported masses. In the beginning we have, for n = r,

$$\left[EJ(x)\varphi_r''(x)\right]'' = \omega_r^2 m(x)\varphi_r(x).$$

Premultiply both members by $\phi_s(x)$ and integrate over the length of the beam gives you

$$\int_0^L \varphi_s(x) \left[EJ(x) \varphi_r''(x) \right]'' dx = \omega_r^2 \int_0^L \varphi_s(x) m(x) \varphi_r(x) dx.$$

Mode Orthogonality, 2

The left member can be integrated by parts, two times, as in

$$\int_{0}^{L} \phi_{s}(x) \left[EJ(x) \phi_{r}^{"}(x) \right]^{"} dx =$$

$$\left[\phi_{s}(x) \left[EJ(x) \phi_{r}^{"}(x) \right]^{'} \right]_{0}^{L} - \left[\phi_{s}^{'}(x) EJ(x) \phi_{r}^{"}(x) \right]_{0}^{L} +$$

$$\int_{0}^{L} \phi_{s}^{"}(x) EJ(x) \phi_{r}^{"}(x) dx$$

Continuous
Systems, Infinite
Degrees of
Freedom

Giacomo Boffi

Continous

Beams in

Equation of motion
Earthquake
Loading
Free Vibrations
Eigenpairs of a
Uniform Beam
Other Boundary
Conditions

Mode Orthogonality Forced Response

Earthquake Response

Beams in Flexure

Equation of motion
Earthquake
Loading
Free Vibrations
Eigenpairs of a
Uniform Beam
Other Boundary
Conditions

Mode Orthogonality Forced Respons

Forced Response Earthquake Response

The left member can be integrated by parts, two times, as in

$$\int_{0}^{L} \phi_{s}(x) \left[EJ(x) \phi_{r}^{"}(x) \right]^{"} dx =$$

$$\left[\phi_{s}(x) \left[EJ(x) \phi_{r}^{"}(x) \right]^{'} \right]_{0}^{L} - \left[\phi_{s}^{'}(x) EJ(x) \phi_{r}^{"}(x) \right]_{0}^{L} +$$

$$\int_{0}^{L} \phi_{s}^{"}(x) EJ(x) \phi_{r}^{"}(x) dx$$

but the terms in brackets are always zero, the first being the product of end displacement by end shear, the second the product of end rotation by bending moment, and for fixed constraints or free end one of the two terms must be zero. So it is

$$\int_0^L \varphi_s''(x) EJ(x) \varphi_r''(x) dx = \omega_r^2 \int_0^L \varphi_s(x) m(x) \varphi_r(x) dx.$$

Mode Orthogonality, 3

We write the last equation exchanging the roles of r and s and subtract from the original,

$$\begin{split} \int_0^L & \varphi_s''(x) E J(x) \varphi_r''(x) \, \mathrm{d}x - \int_0^L & \varphi_r''(x) E J(x) \varphi_s''(x) \, \mathrm{d}x = \\ & \omega_r^2 \int_0^L & \varphi_s(x) m(x) \varphi_r(x) \, \mathrm{d}x - \omega_s^2 \int_0^L & \varphi_r(x) m(x) \varphi_s(x) \, \mathrm{d}x. \end{split}$$

This obviously can be simplyfied giving

$$(\omega_r^2 - \omega_s^2) \int_0^L \phi_r(x) m(x) \phi_s(x) dx = 0$$

implying that, for $\omega_r^2 \neq \omega_s^2$ the modes are orthogonal with respect to the mass distribution, $\int \phi_s \phi_r \, m \, \mathrm{d}x = \delta_{rs} m_r$. It is then easy to show that $\int \phi_s'' \phi_r'' E J \, \mathrm{d}x = \delta_{rs} m_r \omega_r^2$.

Systems, Infinite Degrees of Freedom

Continuous

Jiacomo Botti

ontinous ystems

stems

Beams in Flexu Equation of

motion
Earthquake
Loading
Free Vibrations
Eigenpairs of a

Other Boundary Conditions Mode Orthogonality

Forced Response Earthquake Response

Equation of Earthquake Uniform Beam

Mode

Orthogonality Forced Response

Response

With $u(x,t) = \sum_{1}^{\infty} \phi_m(x) q_m(t)$, the equation of motion can be written

 $\sum_{i=1}^{\infty} m(x) \phi_m(x) \ddot{q}_m(t) + \sum_{i=1}^{\infty} \left[EJ(x) \phi_m''(x) \right]'' q_m(t) = p(x, t)$

premultiplying by ϕ_n and integrating each sum and the loading term

$$\sum_{1}^{\infty} \int_{0}^{L} \varphi_{n}(x) m(x) \varphi_{m}(x) \ddot{q}_{m}(t) dx +$$

$$\sum_{1}^{\infty} \int_{0}^{L} \varphi_{n}(x) \left[EJ(x) \varphi_{m}^{"}(x) \right]^{"} q_{m}(t) dx = \int_{0}^{L} \varphi_{n}(x) p(x, t) dx$$

By the orthogonality of the eigenfunctions this can be simplyfied to

By the orthogonality of the eigenfunctions this can be simplyfied to

 $m_n\ddot{q}_n(t) + k_nq_n(t) = p_n(t), \qquad n = 1, 2, \ldots, \infty$

with

$$m_n = \int_0^L \varphi_n m \varphi_n \, \mathrm{d}x, \qquad k_n = \int_0^L \varphi_n \left[E J \varphi_n'' \right]'' \, \mathrm{d}x,$$
 and $p_n(t) = \int_0^L \varphi_n p(x, t) \, \mathrm{d}x.$

For free ends and/or fixed supports, $k_n = \int_0^L \varphi_n'' E J \varphi_n'' dx$.

Consider an effective earthquake load, $p(x, t) = m(x)\ddot{u}_{g}(t)$, with

$$\mathcal{L}_n = \int_0^L \Phi_n(x) m(x) dx, \qquad \Gamma_n = \frac{\mathcal{L}_n}{m_n},$$

the modal equation of motion can be written (with an obvious generalisation)

$$\ddot{q}_n + 2\omega_n \zeta_n \dot{q}_n + \omega_n^2 q = -\Gamma_n \ddot{u}_{g}(t).$$

The modal response, analogously to the case of discrete models, is the product of the modal partecipation factor and the pseudo-displacement response,

$$q_n(t) = \Gamma_n D_n(t).$$

Earthquake response, 2

Continuous Systems, Infinite Degrees of Freedom

Giacomo Boffi

Orthogonality

Earthquake

Equation of motion Earthquake

Loading Free Vibrations Eigenpairs of a

Uniform Beam Other Boundary Conditions

Mode Forced Response

Response

Example

Modal contributions can be computed directly, e.g.

$$u_n(x,t) = \Gamma_n \phi_n(x) D_n(t),$$

$$M_n(x,t) = -\Gamma_n E J(x) \phi_n''(x) D_n(t),$$

or can be computed from the equivalent static forces.

$$f_s(x,t) = \left[EJ(x)u(x,t)''\right]''$$
.

Orthogonality
Forced Response
Earthquake

Response Example

The modal contributions to equiv. static forces are

$$f_{sn}(x, t) = \Gamma_n \left[EJ(x) \phi_n(x)'' \right]'' D_n(t),$$

that, because it is

$$\left[EJ(x)\phi''(x)\right]'' = \omega^2 m(x)\phi(x)$$

can be written in terms of the mass distribution and of the pseudo-acceleration response $A_n(t) = \omega_n^2 D_n(t)$

$$f_{sn}(x,t) = \Gamma_n m(x) \phi_n(x) \omega_n^2 D_n(t) = \Gamma_n m(x) \phi_n(x) A_n(t).$$

Giacomo Boffi

ontinous ystems

Beams in Flexure

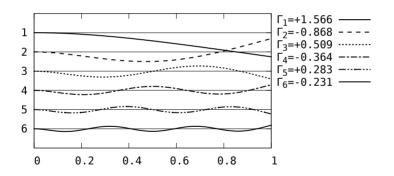
Equation of motion Earthquake Loading Free Vibrations Eigenpairs of a Uniform Beam Other Boundary

Orthogonality Forced Response Earthquake Response

Example

Mode

The effective load is proportional to the mass distribution, and we can do a modal mass decomposition in the same way that we had for MDOF systems, $m(x) = \sum r_n(x) = \sum \Gamma_n m(x) \varphi_n(x)$



Above, the modal mass decomposition $r_n = \Gamma_n m \phi_n$, for the first six modes of a uniform cantilever, in abscissa x/L.

EQ example, cantilever

Continuous
Systems, Infinite
Degrees of
Freedom

For a cantilever, it is possible to derive explicitly some response quantities,

$$V(x)$$
, $M(x)$, $M_{\rm B}$,

that is, the shear force and the base shear force, the bending moment and the base bending moment.

$$V_n^{\mathsf{st}}(x) = \int_x^L r_n(s) \, \mathrm{d}s, \qquad V_{\mathsf{B}}^{\mathsf{st}} = \int_0^L r_n(s) \, \mathrm{d}s = \Gamma_n \mathcal{L}_n = M_n^{\star},$$

$$M_n^{\mathsf{st}}(x) = \int_x^L r_n(s)(s-x) \, \mathrm{d}s, \qquad M_{\mathsf{B}}^{\mathsf{st}} = \int_0^L s r_n(s) \, \mathrm{d}s = M_n^{\star} h_n^{\star}.$$

 M_n^\star is the partecipating modal mass and expresses the partecipation of the different modes to the base shear, it is $\sum M_n^\star = \int_0^L m(x) \, \mathrm{d}x$. $M_n^\star h_n^\star$ expresses the modal partecipation to base moment, h_n^\star is the height where the partecipating modal mass M_n^\star must be placed so that its effects on the base are the same of the static modal forces effects, or M_n^\star is the resultant of s.m.f. and h_n^\star is the position of this resultant.

Giacomo Boffi

Continous Systems

Beams in Flexure

Equation of motion
Earthquake
Loading
Free Vibrations
Eigenpairs of a
Uniform Beam
Other Boundary
Conditions
Mode
Orthogonality
Forced Response
Earthquake
Response

Example

Starting with the definition of total mass and operating a chain of substitutions.

$$M_{\text{TOT}} = \int_0^L m(x) \, dx = \sum \int_0^L r_n(x) \, dx$$
$$= \sum \int_0^L \Gamma_n m(x) \phi_n(x) \, dx = \sum \Gamma_n \int_0^L m(x) \phi_n(x) \, dx$$
$$= \sum \Gamma_n \mathcal{L}_n = \sum M_n^*,$$

we have demonstrated that the sum of the partecipating modal mass is equal to the total mass.

The demonstration that $M_{\text{B,TOT}} = \sum M_n^{\star} h_n^{\star}$ is similar and is left as an exercise.

Conditions
Mode
Orthogonality
Forced Response

Earthquake Response Example

For the first 6 modes of a uniform cantilever.

_						
n	\mathcal{L}_n	m_n	Γ_n	$V_{B,n}$	h_n	$M_{B,n}$
1	0.391496	0.250	1.565984	0.613076	0.726477	0.445386
2	-0.216968	0.250	-0.867872	0.188300	0.209171	0.039387
3	0.127213	0.250	0.508851	0.064732	0.127410	0.008248
4	-0.090949	0.250	-0.363796	0.033087	0.090943	0.003009
5	0.070735	0.250	0.282942	0.020014	0.070736	0.001416
6	-0.057875	0.250	-0.231498	0.013398	0.057875	0.000775
7	0.048971	0.250	0.195883	0.009593	0.048971	0.000470
8	-0.042441	0.250	-0.169765	0.007205	0.042442	0.000306

The convergence for MB is faster than for V_B , because the latter is proportional ton an higher derivative of displacements.