
June 2016 Homework
Dynamics of Structures 2015-2016
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Instructions

This assignment, required for admission to the oral exams of July, is due not later
than Wednesday June 30th. You can score 9, 4, 17 points for problems 1, 2, 3
respectively, you have to score more than 17 points for admission.

Submit your work by email, 1 in the form of a pdf attachment 2 containing your
solutions: for every problem describe your procedure with sufficient detail and report
the intermediate results necessary to derive the required answers.

———

If you desire to submit further materials (e.g., source code, spreadsheets, endless lists
of data produced by your programs etc) provide them as separate attachments. Please
don’t send me an archive (.zip or .rar) with all your files within. Please. Don’t.

———

You are allowed, or rather encouraged to discuss the problems with your colleagues,
but you shall not discuss the problems with anyone else, except for me or other
members of the Faculty.

By the way, to discuss a problem is absolutely different from sharing parts of
its solution and any evidence of sharing will mean no admission to July exams, no
admission for all the involved parties.

1Address your email to giacomo.boffi@polimi.it
2Prepare your pdf using a word processor or a typesetting program, do not prepare it sticking

together photos of a manuscript.
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1 Rayleigh Quotient

A tower structure is composed of a straight, uniform beam
clamped at one end and supporting a massive body at the
other end.
The beam is characterized by its length H, its unit mass m and
its flexural stiffness EJ, the supported body is characterized
by its mass m=3mH.

1. Using the shape function φ(x) = (x/H)
2
compute the

Rayleigh Quotient estimate of the first eigenvalue of the
structure, R00.

2. Compute the first refinement of the Rayleigh Quotient
estimate, R01.

3. Compute the second refinement, R11.

m
=
co
n
st
.,
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J
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n
st
.

H

3mH

1.1 Notes

1. In your derivations neglect the shear and axial deformations of the beam, as
well as any form of rotatory inertia.

2. You will have to compute quite a number of integrals... Some of them must be

computed analytically (e.g., |M(x)|= |
∫H

x
V (s)ds|), others can be computed

either analytically (some are complicated but none is complex) or using a
numerical procedure (say composite Simpson rule, etc).

2 Impact

K

5R 2R

γπR2

m

v

A rigid body is composed of a circle, its radius R and its mass γπR2 and a rectilinear
rod, its length 5R and its mass negligible with respect to circle mass.

The rod, perpendicular to the circle, is rigidly connected to it and it is hinged
at the other end. A further constraint, applied to the hinged end, is a flexural spring
of stiffness K.

The frequency of vibration of the system, measured experimentally for rotations
of small amplitude (θ≈sinθ), is equal to ωn.

The system is at rest when it’s hit by a second body moving in the direction of the
centre of the circle and whose velocity is perpendicular to the rod. The dimensions
of the moving body are negligible and the impact is inelastic: after the impact the
bodies are glued together.
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The amplitude and the frequency of the oscillatory motion of the two bodies
after the impact were measured, θmax=θ0 and ω=αωn, 0<α<1.

Find the mass and the velocity of the impacting body in the hypothesis that the
ensuing motion is of small amplitude.

3 Support Motion
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m

The structure in figure supports two equal masses in C and E and is composed of
two uniform beams, both with flexural stiffness EJ, namely

• a horizontal beam ABCD of length 5L and

• a vertical beam BEF of length 2L,

that are rigidly connected in B.
The mass of the beams is negligible with respect to the supported masses and

the axial and shear deformabilities of the beams are negligible with respect to their
flexural deformability.

1. The structure is at rest when it’s subjected to a horizontal ground acceleration,

üg(t)=δω
2
0

{
sinω0t 0≤ω0t≤2π,
0 otherwise

where δ is a length and ω0=
√

EJ/mL3 is a reference frequency.

(a) Find the analytic expressions of modal responses for 0≤ω0t≤4π.
(b) Using the above analytic expressions, compute and plot vC(t), the vertical

displacement of the mass in C, in the same time interval.

(c) Verify your solution for vC against a numerical solution, computed using
the constant acceleration method.

2. The structure is at rest when it is subjected to a vertical motion of the support
in D,

vD(t)=δ


0 ω0t<0,

ω0t−sinω0t 0≤ω0t≤2π,
2πω0 2π<ω0t.
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(a) Plot vD(t), v̇D(t) and v̈D(t) in the interval 0≤ω0t≤4π.
(b) Compute and plot the total vertical displacement of the mass in C, vC(t)

in the same time interval.

3.1 Notes

Dynamic Degrees of Freedom The mass of the beams being negligible with re-
spect to the supported masses, the axial and shear deformabilities of the beams
being negligible with respect to their flexural deformability, it is possible to
model the dynamic behavior of the structure using three dynamical degrees
of freedom.

Statically Over-determined System You want to compute the stiffness ma-
trix associated with the 3 dynamical dofs but the system is statically over-
determined and it is not a particularly easy task... On the other hand, it is
not a particularly difficult task if you know what to do...

My idea for solving this problem is,

1. remove one constraint (which one? one is more convenient than the
others in light of the second part of the problem),

2. add the corresponding dof,

3. compute the flexibility matrix using the pvd for the resulting statically
determined, 4–dof system,

4. compute the stiffness matrix of the statically determined system,

5. eventually the stiffness matrix of the over-determined system is simply an
appropriate partition of the stiffness matrix of the statically determined
system.

As it happens, I’ve already computed the 4×4 flexibility matrix (using a
specific ordering of the dofs and the most logical choice for the extra dof)
and I want to share the intermediate result, corresponding to step 3 above:

F =
L3

6EJ


24 8 4 56
8 24 15 16
4 15 10 8
56 16 8 160

.
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