
August 2016 Homework
Dynamics of Structures 2015-2016
due not later than Wednesday, August 31st
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Instructions
Submit your work by email1 not later than Wednesday, August 31st, in the form of
a typeset PDF attachment containing your solutions.

For every problem describe your procedure with sufficient detail and report
the intermediate results necessary to derive the required answers — should you
submit further materials (e.g., source code, spreadsheets, endless printouts by your
programs) please provide them as separate attachments.2

You can score up to 25, 50 and 35 points for problems 1, 2, and 3 respectively,
you have to score more than 60 points (over 110) to be admitted to September oral
exams.

I recommend that you read carefully both the text and the notes of each problem
before starting with the solution.

You can discuss the problems with your colleagues, with me, with other mem-
bers of the Faculty but no one else — please note that to discuss a problem is quite
different from sharing parts of its solution; any evidence of sharing implies no
admission to September exams for all the involved parts.

1Address your email to giacomo.boffi@polimi.it
2Please do not attach a .zip or .rar archive with all your files within.
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1 Rayleigh Quotient
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A tower structure is modeled by a straight, uniform beam
clamped at the base, supporting two massive bodies.
The beam is characterized by its length H , its negligible mass
and its flexural stiffness E J, the supported bodies are charac-
terized by their masses and their positions (see figure).

1. Using the shape function ϕ(z) = 1 − cos πz
2H compute

the Rayleigh Quotient estimate of the first eigenvalue of
the structural model, R00.

2. Compute the first refinement and the second refinement
of the Rayleigh Quotient estimate, R01 and R11.

3. Compare your results with the first eigenvalue of a 2
dof model.

2 Multi dof system

2m m

The structure above consists of two rigidly connected, uniform, slender beams
(flexural stiffness EJ, lenghts 4L and L), supporting two different masses.

1. Model the system using 3 dynamical dof expliciting the simplifying as-
sumptions you have to introduce.

2.1 Earthquake Excitation
The structure is at rest when it is subjected to a horizontal ground acceleration,
positive when rightward:

üg(t) =
δ

t2
0




120τ3 − 180τ2 + 60τ 0 ≤ t ≤ t0 with τ = t
t0
,

0 otherwise.
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where δ is a displacement and t0 is related to the structural characteristics by the
relationship ω0t0 = 3π, where ω0 =

√
EJ/mL3

2. Find the analytical expressions of the modal responses for 0 ≤ t ≤ 3t0.

3. Using the above analytical expressions, compute and plot the vertical dis-
placement (positive when downward) of the smaller, rightmost mass in the
same time interval.

2.2 Imposed Support Motion
The structure is at rest when it is subjected to a vertical motion of the bottom hinge,
positive when downwards

vhinge(t) = δ




0 ω0t < 0,
6τ5 − 15τ4 + 10τ3 0 ≤ t ≤ t0 with τ = t

t0
,

1 t0 < t.

4. Plot vhinge(t), v̇hinge(t) and v̈hinge(t) in the interval 0 ≤ t ≤ 3t0.

5. Compute and plot the total vertical displacement of the smaller mass in the
same time interval using the modal superposition procedure.

cc b b

Note: the particular integral for each mode i is a polynomial ξi (t) =
3∑

j=0
Ci jt j .

Note: statically over-determined system You need the stiffness matrix associ-
ated with the 3 dynamical dof but the system is statically over-determined.
The 3× 3 stiffness matrix can be determined using the following procedure.

1. Release one constraint (one of them is much more convenient than the
others) and add the corresponding dof to the 3 dynamic dof.

2. Compute the flexibility matrix using the pvd for the resulting statically
determined, 4 dof system.

3. Compute the stiffness matrix of the statically determined, 4 dof system.
4. The stiffness matrix of the over-determined system is just a partition of

the stiffness matrix of the statically determined system.
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The 4 × 4 flexibility matrix of step 2, for the obvious choice of the additional dof, is:

F =
L3

6E J



72 40 21 14
40 24 13 9
21 13 10 5
14 9 5 4


Had you hopefully choosen the same additional dof as me, your results may however differ from
mine in terms of a) the signs of the off-diagonal terms, that depend on the choice of the signs of
the dof and b) the order of rows and columns, that depends on the numbering of the degrees of
freedom.

3 Vibration Control
A machine of total mass M exerts a steady-state unbalanced force on its rigid
supports,

ps-s(t) = p0 sinω0t,

due to the rotation of an unbalanced part with constant angular velocity ω0.

3.1 Suspension System
Using the damping ratio ζ as a free variable, design a suspension system to limit
the steady-state transmitted force fs-s(t) = f0 sin(ω0t − ϕ) so that it is f0 ≤ p0/4.
Fulfilling this requirement implies a limit on the stiffness, k (ζ ) ≤ M ω2

0 κ(ζ ).

1. Give the analytical expression of the normalized stiffness κ(ζ ) for an under-
critically damped suspension system, 0 ≤ ζ < 1.

2. Plot the normalized stiffness, κ(ζ ).

3.2 Transient

At startup, for 0 ≤ t ≤ t0 the angular velocity ω(t) of the rotating part of the
machine increases quadratically from 0 to ω0, with a horizontal tangent in t = t0
and later remains constant. The angular velocity,ω(t) = ϑ̇(t), is the time derivative
of the phase angle, ϑ(t), which describes the position of the rotating part.
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3. Give the analytical expressions of the phase angle, ϑ(t), the angular velocity
ω(t) and the unbalanced force p(t) for 0 ≤ t ≤ 2t0 (consider ϑ(0) = 0).

4. Plot ϑ(t), ω(t) and p(t) in the same time interval.

3.3 Transient Response
For ω0t0 = 50π, for ζ = 2.5%, 10%, 40%, for f0 = p0/4 and k =Mω2

0κ(ζ ).

5. Determine the peak value of the transmitted force during the transient.

6. Determine how long it takes for the response to be within 1% of the steady
state response

Use the linear acceleration algorithm with a time step h = T?/10 (T? = 2π/ω0
being the period of the steady-state force) to derive the required results.

cc b b

Note: non uniform circular motion Consider a mass m spinning around a fixed
axis at a constant distance r .
The mass position in its plane can be written in terms of an angular variable
using the exponential notation, z = r eiϑ, where ϑ is the phase angle.
The mass velocity is ż = iϑ̇ r eiϑ = iω r eiϑ and its acceleration (using
Euler’s formula) is

z̈ = (iω̇ − ω2) r eiϑ

= (iω̇ − ω2) r (cos ϑ + i sin ϑ)

= i (ω̇ cos ϑ − ω2 sin ϑ) r − (ω2 cos ϑ + ω̇ sin ϑ) r .

The reaction R of the axis is opposite to the force on the mass, R = −mz̈
and the unbalanced load is the component of R in the direction of gravity.
Using the imaginary component, for a non uniform circular motion it is

p(t) = mr (ω2 sin ϑ − ω̇ cos ϑ).

For a uniform motion, ω(t) = ω0 and ω̇ = 0, the unbalanced load is simply
p(t) = mrω2

0 sin(ω0t − ϕ) and you have p0 = mω2
0 r .

Note: machine mass and unbalanced mass I’ve used different symbols for the
total mass of the machine and the the unbalanced mass.
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