
2 DOF System, Alternative Procedure
G. Boffi

1 Alternative Solution to 2DOF Problem
If you get lost in the solution proposed for the first exercise, here it is an alternative solution based on a direct
kinematic analysis and a somewhat labourious summing up of all the inertial contributions to the equation of
equilibrium written using the PVD.

We don’t want to use symbolic programming so we are going to attribute a unit value to the physical constants,
the displacements and the accelerations so that we can use their names in the various expressions below w/o
modifying the expressions’ values.

m, k = 1.0, 1.0
x1, x2 = 1, 1
a1, a2 = 1, 1

To represent a virtual displacement, we’ll use a (dummy) function to compute the increment of a quantity, that
it’s here defined as follows:

def delta(x): return x

1.1 Kinematic Analysis Results
First row, the (small) displacements when x2 =0, normalized w/r to x1; second row, ditto for x1 =0, normalized
w/r to x2.

+1

-1

-1 -1

-1

+1

0

0

+6

0

0
2

+2

+2

0

0

0

0

+1

-1

-1

u/x1 v/x1

u/x2 v/x2

-1

+1

+1

+1

+1 -3-1

-1

-1

1.2 Elastic Forces
The displacements in A and B due to x1 and x2 and the resulting spring forces on the structure

uA1, uA2 = 1*x1, 0*x2
fxA1, fxA2 = -k*uA1, -k*uA2

1

vB1, vB2 = 0*x2, 1*x2
fyB1, fyB2 = -k*vB1, -k*vB2

1.3 Inertial Forces
The displacements (we’ll need them for the PVD), the accelerations and the inertial forces in D due to ẍ1 and ẍ2

uD1, uD2 = -1*x1, +1*x2
auD1, auD2 = -1*a1, +1*a2
fxD1, fxD2 = -m*auD1, -m*auD2

vD1, vD2 = +6*x1, -3*x2
avD1, avD2 = +6*a1, -3*a2
fyD1, fyD2 = -m*avD1, -m*avD2

The displacements, the accelerations and the inertial forces in E due to ẍ1 and ẍ2

uE1, uE2 = 1*x1, -1*x2
auE1, auE2 = 1*a1, -1*a2
fxE1, fxE2 = -m*auE1, -m*auE2

vE1, vE2 = 2*x1, -1*x2
avE1, avE2 = 2*a1, -1*a2
fyE1, fyE2 = -m*avE1, -m*avE2

1.4 Equation of motion and Structural Matrices
The structural matrices can be computed , coefficient by coefficient, by the application of the PVD

k11 = - fxA1*delta(uA1)
k12 = - fxA2*delta(uA1)
k21 = - fyB1*delta(vB1)
k22 = - fyB2*delta(vB2)

m11 = - fxD1*delta(uD1) - fyD1*delta(vD1) - fxE1*delta(uE1) - fyE1*delta(vE1)
m12 = - fxD2*delta(uD1) - fyD2*delta(vD1) - fxE2*delta(uE1) - fyE2*delta(vE1)
m21 = - fxD1*delta(uD2) - fyD1*delta(vD2) - fxE1*delta(uE2) - fyE1*delta(vE2)
m22 = - fxD2*delta(uD2) - fyD2*delta(vD2) - fxE2*delta(uE2) - fyE2*delta(vE2)

K = array(((k11, k12), (k21, k22)))
M = array(((m11, m12), (m21, m22)))

print(K)
print(M)

[[1. 0.]
[0. 1.]]
[[42. -22.]
[-22. 12.]]

As you can see, the structural matrices are equal to the ones computed in another fashion. The remaining
part of the solution is the same.

2

	Alternative Solution to 2DOF Problem
	Kinematic Analysis Results
	Elastic Forces
	Inertial Forces
	Equation of motion and Structural Matrices

