
Rayleigh Quotient
G. Boffi

1 Rayleigh Quotient
1.1 Characterization of the Problem
The physical constants involved with our problem. Because the lengths are reported in millimetres I have used
exact fractions (the frac(n,d) used below meaning n/d) to exactly express the lengths in metres

dimensions below are in metres
L, B = frac(2200, 1000), frac(1000, 1000)
H0, HL = frac(280, 1000), frac(200, 1000)

rho = 2500 # kg/m^3
E = 16*10**9 # Pa
M = 300 # kg

We need the height H(ξ), the area A(ξ) and eventually the flexural inertia J(ξ) in terms of the constants
previosly defined and of the position, either x or an adimensional coordinate ξ= x/L. Expression that contain
symbols are, of course, symbolic equations. . .

x, xi = symbols('x xi')

H = H0 + (HL-H0)*xi
A = H*B
J = H**3*B/12

1.2 The Shape Function φ3

The shape function is defined in terms of the parameter a: φ3=φ3(ξ;a).
After this definition we compute its second derivative with respect to x applying the chain rule.

a = symbols('a')

phi3 = a*xi*xi + (1-a)*xi*xi*xi
phi3_2 = diff_x(phi3, xi, L, 2)

display(Eq(symbols('phi_3'),phi3))

φ3=aξ2+ξ3(−a+1)

1.3 Maximum Energies, Approximate Eigenvalue
We write the maximum kinetic energy (remembering the lumped mass contribution), the maximum strain energy
and we find our approximation solving for ω2 the equation T(ω2,a)=V (a)

w2 = symbols('omega^2')

T_mx = w2*(integ_x(A*rho*phi3**2, xi, L)+300*(phi3.subs(xi,1))**2)/2
display(Eq(symbols('T'), T_mx))

V_mx = integ_x(E*J*phi3_2**2, xi, L)/2
display(Eq(symbols('V'), V_mx))

w2_app, = solve((T_mx-V_mx), w2)
display(Eq(w2, w2_app))

T=ω2

2

(
253a2

21
+1210a

21
+465

)
V = 3654400000a2

1331
−9728000000a

1331
+10809600000

1331

ω2= 153484800000a2−408576000000a+454003200000
336743a2+1610510a+12997215

1

1.3.1 Local Minimum Study
The approximation we have obtained is a function of a and we know that the best approximation is the lowest possible
one. To have an idea of the minimum value we can plot the approximation against a — but, for which range of a?

For a=3/2 the bending moment (M=EJφ′′
3∝EJ(x)(2a+6(1−a)x)) is equal to zero in x=L, that is physically

appealing, so I’ve chosen to plot ω2
app(a) for an interval centered around 1.5, namely 1≤a≤2

sy.plot(w2_app, (a, 1, 2));

As you can see, a=1.5 was a good guess, but we can do better solving, with respect to a, the equation

dω2
app

da
=0

(the numerator of the derivative is still quadratic in a, hence two roots).
a1, a2 = solve(w2_app.diff(a), a)
print("Roots: a_1 = %+f, a_2 = %+f;"%(a1.evalf(), a2.evalf()))
display(Eq(symbols('a_1'), a1))
display(Latex(r'$$\frac{\text{d}\,\omega^2_\text{app}}{\text{d}a}={}'+

latex(w2_app.diff(a).simplify()) + r'$$'))

Roots: a_1 = +1.427199, a_2 = -11.001614;

a1=−858083
179245

+2
p

310194062891
179245

dω2
app

da
= 289086336000000a2+2767832524800000a−4539088512000000

85195979a4+814918060a3+8525307890a2+31453260300a+126917804475
To compute the requested value (the period of vibration) we have to substitute a= a1 in ω2

app, evaluate the
resulting expression to a floating point number and eventually compute the period of vibtration.
w2_num = w2_app.subs(a, a1).evalf()
T_num = 2*pi/sqrt(w2_num)
print("%50s:%16.6f."%("Approximation to the 1st eigenvalue", w2_num))
print("%50s:%16.6f."%("Approximation to the 1st period of vibration", T_num))

Approximation to the 1st eigenvalue: 11482.965526.
Approximation to the 1st period of vibration: 0.058634.

2

1.4 Initialization Cells
First, we need help from external libraries (sympy, IPython and math), then we need to tell sympy that
we want to format its output using LaTeX, eventually we inject in the notebook some html and css code
to have a nicely presented notebook.

import sympy as sy
from sympy import Eq, Rational as frac, latex, solve, symbols
from math import pi, sqrt
from IPython.display import display, HTML, Latex
sy.init_printing(use_latex=1)
display(HTML(open('01.css').read()))

<IPython.core.display.HTML object>

1.4.1 Helper Functions
We want to differentiate or integrate with respect to x some expressions that contain the adimensional coordinate
ξ=x/L, so we define the following two auxiliary functions. . .

def diff_x(f, x, l, d=1): return f.subs(x, x/l).diff(x, d).subs(x, x*L)
def integ_x(f, x, l): return f.subs(x, x/l).integrate((x, 0, l)).subs(x, x*l)

3

	Rayleigh Quotient
	Characterization of the Problem
	The Shape Function \phi_3
	Maximum Energies, Approximate Eigenvalue
	Local Minimum Study

	Initialization Cells
	Helper Functions

