## Support Motion

## G. Boffi

## 1 Support Motion

We add a DOF corresponding to the imposed support motion and collect the bending moments due to unit forces in M, we compute F33 using the PVD, we compute the influence matrix E using the last column of E33, we compute the augmented stiffness K33 by inversion of F33 and the structural stiffness matrix K by partitioning. The structural mass matrix $M$ is trivial...

```
L = [1, 3, 1]
M = [[p(+1, +0), p(+0, -1), p(+0, -1)],
    [p(+0, +0), p(+1, +0), p(+1, +3)],
    [p(+0, +0), p(+0, +0), p(+1, +0)]]
F33 = array([[sum(integrate(m1*m2, 0, l) for m1, m2, l in zip(M1, M2,L))
for M1 in M] for M2 in M])
E = F33[:2,2]/F33[2,2]
K33 = inv(F33)
K = K33[:2,:2]
M = array (((1, 0), (0, 1)))
\[
\begin{gathered}
\overline{\boldsymbol{F}}=\frac{1}{6} \frac{L^{3}}{E J}\left[\begin{array}{ccc}
26.0 & -48.0 & -3.0 \\
-48.0 & 128.0 & 11.0 \\
-3.0 & 11.0 & 2.0
\end{array}\right], \quad \overline{\boldsymbol{K}}=\frac{1}{153} \frac{E J}{L^{3}}\left[\begin{array}{ccc}
135.0 & 63.0 & -144.0 \\
63.0 & 43.0 & -142.0 \\
-144.0 & -142.0 & 1024.0
\end{array}\right], \\
\boldsymbol{K}=\frac{1}{153} \frac{E J}{L^{3}}\left[\begin{array}{cc}
135.0 & 63.0 \\
63.0 & 43.0
\end{array}\right], \quad \boldsymbol{M}=m\left[\begin{array}{ll}
1.0 & 0.0 \\
0.0 & 1.0
\end{array}\right], \\
\boldsymbol{E}=\frac{1}{2}\left[\begin{array}{c}
-3.0 \\
11.0
\end{array}\right] .
\end{gathered}
\]
```

Now, the free vibrations problem can be solved using eigh
$\mid$ Lambda2, evecs $=\operatorname{eigh}(K, M)$

$$
\boldsymbol{\Lambda}^{2}=\left[\begin{array}{ll}
0.0719 & 0.0000 \\
0.0000 & 1.0915
\end{array}\right], \quad \boldsymbol{\Lambda}=\left[\begin{array}{ll}
0.2681 & 0.0000 \\
0.0000 & 1.0448
\end{array}\right], \quad \boldsymbol{\Psi}=\left[\begin{array}{cc}
0.4529 & -0.8915 \\
-0.8915 & -0.4529
\end{array}\right] .
$$

We start from the equation of motion in terms of $t$ :

$$
m \boldsymbol{M} \frac{\mathrm{~d}^{2} \boldsymbol{x}}{\mathrm{~d} t^{2}}+\frac{\boldsymbol{E} J}{L^{3}} \boldsymbol{K} \boldsymbol{x}=-m \boldsymbol{M} \boldsymbol{e} \delta \omega_{0}^{2} f\left(\omega_{0} t\right)
$$

Changing the time variable from $t$ to $a=\omega_{0} t$, using the chain rule for derivation (the dot notation means derivation with respect to $a$ ), dividing both members by $m \omega_{0}^{2}$ and taking into account that $E J / m L^{3}=\omega_{0}^{2}$, eventually we have

$$
\boldsymbol{M} \ddot{\boldsymbol{x}}+\boldsymbol{K} \boldsymbol{x}=-\boldsymbol{M e} \delta f(a) .
$$

Using the modal transformation, with $\eta_{i}=q_{i} / \delta$, for every $i=1, \ldots$, NDOF we have

$$
\ddot{\eta}_{i}+\lambda_{i}^{2} \eta_{i}=\gamma_{i} f(a), \quad \text { with } \gamma_{i}=-\boldsymbol{\psi}_{i}^{T} \boldsymbol{M e} .
$$

gamma $=$-evecs.T@M@E
platex ( $r^{\prime} \backslash$ boldsymbol\gamma_=', mat2lat (gamma[:, None]. T, dlm='B'), '\{\}^T')

$$
\boldsymbol{\gamma}=\left\{\begin{array}{ll}
5.58289 & 1.15384
\end{array}\right\}^{T}
$$

Because $f(a)$ is a polynomial, $f(a)=\sum_{0}^{m} f_{j} a^{j}$

```
| the polynomial is here defined by the list of its roots
f = poly1d((0, 3, 5), r=1, variable='a')
print(f)
    3 2
1 a - 8 a + 15a
```

we can

- write $\gamma_{i} f(a)=f_{i}(a)=\sum_{0}^{m} f_{i, j} a^{j}$ and
- assume that $h_{i}(\alpha)=\sum_{0}^{m} h_{i, j} \alpha^{j}$ is a particular integral of the $i$-th equation of motion.

The second derivative of $h$ can be written $\ddot{h}_{i}=\sum_{0}^{m}(j+2)(j+1) h_{i, j+2} a^{j}$ with the understanding that the coefficients of $a^{m-1}$ and $a^{m}$ are equal to zero: $h_{i, m+1}=h_{i, m+2}=0$. Substituting in the $i$-th eom and equating terms with the same power of $a$ on both sides we have

$$
\left((j+2)(j+1) h_{i, j+2}+\lambda_{i}^{2} h_{i, j}\right) a^{j}=f_{i, j} a^{j}, \quad j=m, \ldots, 0 .
$$

We have written $j=m, \ldots, 0$ because we can solve formally for $h_{i, j}$

$$
h_{i, j}=\frac{f_{i, j}-(j+2)(j+1) h_{i, j+2}}{\lambda_{i}^{2}}, \quad j=m, m-1, m-2, \ldots
$$

and notice that the coefficient $h_{i, m}$ can be computed because $h_{i, m+2}=0$, the coefficent $h_{i, m-1}$ can be computed because $h_{i, m+1}=0$ and that all the remaining coefficients can be computed, in inverse order, because the terms with higher indices have already been computed.
The procedure sketched above can be easily programmed in terms of the coefficients of $f_{i}(a)$, f_i and of the value of $\lambda_{i}^{2}$, l2_1:

```
def part_int(f_i, l2_i):
    h_i = [0, 0]
    m}= f.order
    for j in range(m, -1, -1): # j = m, m-1, m-2, ..., \odot
        h_ij = (f_i[j]-(j+1)*(j+2)*h_i[-2]) / l2_i
        h_i.append(h_ij)
    return poly1d(h_i, variable='a')
```

Eventually we can compute the particular integrals for our modal eom's (and check the results too...):

```
|h = [part_int(f*g_i, l2_i) for l2_i, g_i in zip(Lambda2, gamma)]
```

$$
\begin{gathered}
h_{i}=+77.698183 a^{3}-621.585462 a^{2}-5322.574538 a+17301.459409 \\
\ddot{h}_{i}+\lambda_{i}^{2} h_{i}=+5.582889 a^{3}-44.663109 a^{2}+83.743330 a \\
f_{i}(a)=\gamma_{i} f(a)=+5.582889 a^{3}-44.663109 a^{2}+83.743330 a \\
h_{i}=+1.057073 a^{3}-8.456586 a^{2}+10.045584 a+15.494707 \\
\ddot{h}_{i}+\lambda_{i}^{2} h_{i}=+1.153843 a^{3}-9.230746 a^{2}+17.307649 a \\
f_{i}(a)=\gamma_{i} f(a)=+1.153843 a^{3}-9.230746 a^{2}+17.307649 a
\end{gathered}
$$

Our system starts from rest conditions, hence the initial conditions in modal coordinates are $q_{i}(0)=0$ and $\dot{q}_{i}(0)=0$. From the expression of the general integral $\eta_{i}=A_{i} \sin \lambda_{i} a+B_{i} \cos \lambda_{i} a+h_{i}(a)$ we have

$$
\left\{\begin{array}{l}
B_{i}=-h_{i}(0) \\
A_{i}=-\dot{h}_{i}(0) / \lambda_{i}
\end{array}\right.
$$

```
Lambda = sqrt(Lambda2)
B = -array([h_i(0) for h_i in h])
A = - array([h_i.deriv()(0) for h_i in h])/Lambda
```

$\eta_{1}(a)=19856.271355 \sin 0.268055 a-17301.459409 \cos 0.268055 a+77.698183 a^{3}-621.585462 a^{2}-5322.574538 a+17301.459409$
$\eta_{2}(a)=-9.615112 \sin 1.044770 a-15.494707 \cos 1.044770 a+1.057073 a^{3}-8.456586 a^{2}+10.045584 a+15.494707$

```
a = linspace(0, 5, 1001)
eta = col(A)*sin(col(Lambda)*a)+\operatorname{col}(B)*\operatorname{cos}(\operatorname{col}(Lambda)*a)+[h_i(a) for h_i in h]
xi = evecs@eta
xi_stat = col(E)*f.integ(2)(a)
xi_tot = xi_stat+xi
```



Dynamic Deflections of the Mass


Static Displacements of the Mass



