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Introduction

A periodic loading is characterized by the identity

p(t)=p(t+T)

where T is the period of the loading, and w; = 2% is its principal

frequency.
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Introduction

Periodic loadings can be expressed as an infinite series of harmonic
functions using Fourier theorem, e.g., an antisymmetric loading is

p(t) = p(—t) = Y72, pjsinjwit = 3 72y psinw;t  (with w; = j3F).
The steady-state response of a SDOF system for a harmonic loading
Apj(t) = pjsinw;t is known; with B; = w;/wy, it is:

Xjss = ZD(Bj, Q) sin(wjt —B(B;, ).
In general, it is possible to sum all steady-state responses, the

infinite series giving the SDOF response to p(t).

Due to the asymptotic behaviour of D(f3; C) (D goes to zero for
large, increasing ) it is apparent that a good approximation to
the steady-state response can be obtained using a limited
number of low-frequency terms.
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Using Fourier theorem any practical periodic loading can be
expressed as a series of harmonic loading terms.

Introduction

Consider a loading of period T, its Fourier series is given by Fourier Series

Representation

Fourier Series of
the Response

[o.¢] (o 0]
27 An example
t) = ag + a;cosw;t + bisinw;t, w;=jw;=j—,
P( ) 0 JZI j g ; j ' j J 1 ./Tp

where the harmonic amplitude coefficients have expressions:

1 (T 2 (e
ag = ?pJO p(t) dt, aj = TpJ p(t) cosw;t dt,

2 (T

bj:—J p(t) sinw;t dt,
To Jo

TP

o

as, by orthogonality, [* p(t)cosw;dt = |
etc.

cos2 witdt = g
ajcos” w;tdt = Faj, etc

Fourier Coefficients SDOF linear

oscillator
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If p(t) has not an analytical representation and must be measured
experimentally or computed numerically, we may assume that it is possible

(a) to divide the period in N equal parts At = T,/N, preduction
. . Representation
(b) measure or compute p(t) at a discrete set of instants ti, to, ..., tn, FI:,UP;;;V Series of
. the Response
with t,, = mAt, /o el
obtaining a discrete set of values p,,, m=1,..., N (note that pg = py by
periodicity).

Under these asssumptions the, e.g., cosine-wave amplitude coefficients can
be approximated using the trapezoidal rule of integration (note that

po = pn and
N
2At
aj = ? Z Pm COS Wjty,
P m=1
N N .
2 2 27
=N Z Ppmcos(jwimAt) = N Z Pm costN )
m=1 m=1
Periodicity SDOF linear
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The coefficients of the Discrete Fourier Series are periodic,

with period N.
Introduction
E.g., here it is how we can compute aj, y according to its definition: Fouduis
N i wpones
. n example
2 2(j + N)ymm e
Aj+N = N Z Pm COST
m=1
2 2(jm + Nm)m
== cos ———————
N2 Pm N

3
Il
-

I
=™
M=

9
Pm COS (JNm7r + 2m7t>

2jmm
Pm COS =3 — = 3j

3
ll

I
=™
M=

3
l
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The Fourier series can also be written in terms of exponentials of
imaginary argument,

Introduction

t) = E IDJ exp ijt Fourier Series
Representation
j=—00 Fourier Series of
the Response

Anlexample

where the complex amplitude coefficients are given by

1 (T
Pj:—J p(t)expiw;t dt, j=—00,...,+00.
Tp 0

For a sampled p,, we can write, using the trapezoidal integration rule and
substituting tm, = mAt =m T,/N, w; = j2n/T,:

27tjm

N
mZ: m exp(— N ).

For sampled input also the coefficients of the exponential series are

periodic, Pjyn = P;.

\22

==

SDOF linear

Undamped Response oscillator
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We have seen that the steady-state response to the jth sine-wave
harmonic can be written as

Introduction
Fourier Series

b' ]. Representation
—— i . ——Y ourier Series of
X_] = > sSin (th, BJ — wj/wnr cheRes:onle
k|1—p3 ot

analogously, for the jth cosine-wave harmonic,

aj 1 ¢
Xji= 7 17T a2 COs Wy t.
k |1—p3

Finally, we write

1 1
X(t):E ao—i-JZl 1_{321 (aj cosw;jt + bjsin w;t)
Damped Response S oslator
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In the case of a damped oscillator, we must substitute the steady

state response for both the jth sine- and cosine-wave harmonic, ettt
Rapresentation
00 Fourier Series of
x(t) *0 l —2Pi by cos w;t+ Z":ii'::ffe
KTk Z: (2CB s

1 +20Bj a5+ (1— B) by
+ka1 (1= 332+ (208,

sin w;t.

As usual, the exponential notation is neater,

i Pj exple
k ( +/(2C[SJ)




Example

As an example, consider the loading p(t) = max{pg sin 2%: 0}
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Introduction

etc, we have

8 8 1
x(t) = % <1+ gsinwlﬂr EcosZwltJr %cos4w1t+...>

Take note, these solutions are particular solutions! If your solution has to
respect given initial conditions, you must consider also the homogeneous

solution.

1 To/2 . 27t dt Po Fourier Series
ag) = — Po SIn —— =, Repr-esentafion
To Jo Tp g e
) An example
2 (T/2  omt 2mjt a4t 0 for j odd
aj=— Po SIN —— cos —— = .
To Jo Tp To & {ﬁ] for j even,
2 (Te/2 omt | 2mjt B forj=1
bjz? POSIH? sm? dt = 02 f 1
pJo p p orn> 1.
Example cont. S oslator
) Giacomo Boffi
Assuming (31 = 3/4, from
= %.(1 + %ls_in wst — %cos2w1t — % cos4wot — ... ) with the
dynamic amplifiction factors Isedtren
Fourier Series
Representation
p—_ L+ _1 e o
1— (1%)2 7 An example
1 4
D, = Sy
2T1-(232 s
1 1
Dy = s =—>, Dg=
1—(43)2 8

Example cont.

Xj = Zj=1.'.,i aj coswjt + bj sinwjt

5 T T
PN AN B Xo
4+ PN AR Lo X7 - ---
v \ \ v \ 1
3 ¥ \ J \ J \\ Xy v
- Y o N 7 4
A \ 4 A /.’, W Xa T
/1 W\ I \ i N
2k ' . \ \ =
o ; \ ] R /i )
a a W\ I/ \ i W\
~ 1 2\ 5 Y /.1 ! ;
= \\ I \ I " !
X N /" Y /" \‘\ I
X ot 3 ) 3 K b "
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X K /‘, Y I \ h
-1 t i \ / v 7
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2T ‘\ 7 N WL
Ny \~ -/ Y,
3+ N ! L]
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It is possible to extend the Fourier analysis to non periodic loading.
Let's start from the Fourier series representation of the load p(t),

+o00 o
p(t) = Z Prexpliw,t),  w,=rAw, Aw = ?' Extension of
—00 P Py e
functions
introducing P(iw,) = P, T, and substituting, Froduency -
1 “+oo Aw +o0
p(t) = ?p Z Pliw,)exp(iw,t) = S Z Pliw,)exp(iw,t).
—0Q —00
Due to periodicity, we can modify the extremes of integration in the
expression for the complex amplitudes,
+Tp/2
Pliw,) = J p(t) exp(—iw,t) dt.
—T,/2
Non periodic loadings (2) et

Giacomo Boffi

If the loading period is extended to infinity to represent the non-periodicity of
the loading (T, — c0) then (a) the frequency increment becomes infinitesimal e
) . xtension o
(Aw = 2% — dw) and (b) the discrete frequency w, becomes a continuous Fourier Series to
P

non p.eriodic
variable, w. functions
Response in the

In the limit, for T, — co we can then write Ecqusncy

Domain

+oo

p(t) = iJ P(iw)exp(iwt) dw

21 |
+00

P(iw) :J p(t) exp(—iwt) dt,

—o00

which are known as the inverse and the direct Fourier Transforms, respectively,
and are collectively known as the Fourier transform pair.
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In analogy to what we have seen for periodic loads, the response of a damped

SDOF system can be written in terms of H(iw), the complex frequency response Extension of
function, pon periodic
1 [t P
x(t) = 7J H(iw) P(iw) exp iwt dt, where Frahomey™ "
21 ) Domain
. 1 1 1[(1—p2) —i(2p) w
Hliw)=Z |l m— o | = 2 |7 a2 5503 BP=—-
k [(1=p2)+i(2CR)] Kk [(1—B?)*+ (2¢B)? wh

To obtain the response through frequency domain, you should evaluate the
above integral, but analytical integration is not always possible, and when it is
possible, it is usually very difficult, implying contour integration in the complex
plane (for an example, see Example E6-3 in Clough Penzien).
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To overcome the analytical difficulties associated with the inverse Fourier
transform, one can use appropriate numerical methods, leading to good
approximations.

Consider a loading of finite period T, divided into N equal intervals At = T,/N,

and the set of values p; = p(t;) = p(sAt). Ui,

We can approximate the complex amplitude coefficients with a sum, Aliasing :
The F;ast Fourier
Transform

1 ("
P, T J p(t)exp(—iw,t) dt, that, by trapezoidal rule, is
pJo

0

1 N 1 = 2mrs
SR <At§ Ps exp(—:w,ts)> =% ; ps exp(—i =),




Discrete Fourier Transform (2)

In the last two passages we have used the relations

PN = Po.,

21t T, 27 rs
W, ts = rAwsAt = rs — £ =

T, N

N

Take note that the discrete function exp(—izx's

exp(iw, ty) = exp(irAwT,) = exp(ir2m) = exp(i0)

), defined for integer r, s is

SDOF linear
oscillator
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The Discrete
Fourier Transform

Aliasing
periodic with period N, implying that the complex amplitude coefficients are oo B et
themselves periodic with period N.

Pr+N = Pr
Starting in the time domain with N distinct complex numbers, p;, we have found
that in the frequency domain our load is described by N distinct complex
numbers, P,, so that we can say that our function is described by the same
amount of information in both domains.
f b SDOF linear
Al 1asl ng oscillator

Only N/2 distinct frequencies
(O Zfzg) contribute
to the load representation, what
if the frequency content of the
loading has contributions from
frequencies higher than wy,»?

sin(21 * (210/T, * s T;/N), N=20, $=0,..20 —+—
sin(22 * (2T)/T, * s Ty/N), N=20, §=0,..,20 --*---

X

Giacomo Boffi

The Discrete
Fourier Transform

/ Aliasin
What happens is aliasing, i.e., e \ Q:nngfanwrier
the upper frequencies contribu- ‘ ¥
tions are mapped to contribu- /
tions of lesser frequency. *
0 1/4Tp
See the plot above: the contributions from the high frequency sines, when
sampled, are indistinguishable from the contributions from lower frequency
components, i.e., are aliased to lower frequencies!
Aliasing (2) SDOF linear

» The maximum frequency that can be described in the DFT is
called the Nyquist frequency, wny

—12n
— 2 At

» It is usual in signal analysis to remove the signal’s higher
frequency components preprocessing the signal with a filter or a

digital filter.

> It is worth noting that the resolution of the DFT in the
frequency domain for a given sampling rate is proportional to
the number of samples, i.e., to the duration of the sample.

Giacomo Boffi
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The Fast Fourier Transform

The operation count in a DFT is in the order of N2.

A Fast Fourier Transform is an algorithm that reduces the number of
arithmetic operations needed to compute a DFT.

The first and simpler FFT algorithm is the Decimation in Time
algorithm by Cooley and Tukey (1965).

The algorithm introduced by Cooley and Tukey is quite complex
because it allows to proceed without additional memory, we will
describe a different algorithm, that is based on the same principles
but requires additional memory and it's rather simpler than the
original one.
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Decimation in Time DFT

For simplicity, assume that N is even and split the DFT summation
in two separate sums, with even and odd indices

N—1 '
X, = sze’%”“, r=0,...,N—1
s=0
N/2—1 N/2—1
= > xpqe N (200 4 > Xog1e N (241"
q=0 q=0

. 27, . .
Collecting e~ "~ " in the second term and letting 2—,\7 = Ni/z' we have

N/2—1 N/2—1
_2mi _2mi _2mi
X = E Xoq€ D7EAEE . E X2q+1€ n/290
q=0 q=0

i.e., we have two DFT's of length N/2. The operations count is just
2(N/2)? = N?/2, but we have to combine these two halves in the
full DFT.
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Decimation in Time DFT

Say that
27

X =E +e V'O,

where E, and O, are the even and odd half-DFT's, of which we computed only
coefficients from 0 to N/2 — 1.
To get the full sequence we have to note that

1. the E and O DFT's are periodic with period N/2, and
2. exp(—2mi(r+ N/2)/N) = e ™ exp(—2mir/N) = — exp(—2mir/N),
so that we can write

X - E, + exp(—2mir/N)O,
’ Er_njp— eXP(—27Tif/N)Or7N/2

if r<NJ2,
if r>N/2.

The algorithm that was outlined can be applied to the computation of each of
the half-DFT's when N /2 were even, so that the operation count goes to N?/4.
If N/4 were even ...
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Pseudocode for CT algorithm

def fft2(X, N):
if N = 1 then

SDOF linear
oscillator
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Y =X
else The Discrete
YO = fft2(X0, N/2) Z‘E::i:rgTransfcrm
Y1 = £fft2(X1, N/2) The Fast Fourie
for k = 0 to N/2-1
Y_k = YO_k + exp(2 pi i k/N) Y1 k
Y_(k+N/2) = YO_k - exp(2 pi i k/N) Y1 _k
endfor
endif
return Y
from cmath import exp, pi SES(Z:TI;itr;ar

def d_fft(x,n):
""mPpirect fft of x, a list of n=2xxm complex values
return fft(x,n,[exp(—2xpi*lj*xk/n) for k in range(n/2)])

nun

def i fft(x,n):
" nyerse fft of x, a list of n=2x+m complex values
transform = fft(x,n,[exp(+2+xpixljxk/n) for k in range(n/2)])]
return [x/n for x in transform]

def fft(x, n, tw):
"""Decimation in Time FFT, to be called by d _fft and i fft.
X is the signal to transform, a list of complex values

nun

n is its length, results are undefined if n is not a power of 2

tw is a list of twiddle factors, precomputed by the caller

Giacomo Boffi

The Discrete
Fourier Transform

returns a list of complex values, to be normalized in case of an #L‘:s';f“ Fourier
inverse transform""" Transform
if n = 1: return x # bottom reached, DFT of a length 1 vec x is x
# call fft with the even and the odd coefficients in x
# the results are the so called even and odd DFT's
e, o= fft(x[0::2], n/2, tw[::2]), fft(x[1::2], n/2, tw[::2])
# assemble the partial results:
# 1st half of full DFT is put in even DFT, 2nd half in odd DFT
for k in range(n/2):
e[k], o[k] = e[k]+tw[k]*o[k], e[k]—tw[k]*xo[k]
# concatenate the two halves of the DFT and return to caller
return e + o
f SDOF linear
Dynamic Response (1) DOF line

To evaluate the dynamic response of a linear SDOF system in the
frequency domain, use the inverse DFT,

N—1
21 rs

Xs = V, exp(i ), s=0,1,...,.N—1
0

—
where V, = H, P,. P, are the discrete complex amplitude coefficients
computed using the direct DFT, and H, is the discretization of the
complex frequency response function, that for viscous damping is

Tk (=B +i(20B) | Kk [(1—PB22+(20B2] T
while for hysteretic damping it is
1 1 }_1[(1—63)—1'(26)]
k [(1=p2)+i(20)] Kk [(1—Pp2)2+(20)?

H, =

W,

w,

Giacomo Boffi
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Dynamic Response (2)

Some word of caution...
If you're going to approach the application of the complex frequency
response function without proper concern, you're likely to be hurt.
Let's say Aw = 1.0, N =32, w, = 3.5 and r = 30, what do you think it is
the value of B30? If you are thinking $30 = 30 Aw/w, = 30/3.5 =~ 8.57
you're wrong!

rAw r<N/2

(r—N)Aw r>N/2'
note that in the upper part of the DFT the coefficients correspond to
negative frequencies and, staying within our example, it is
630 = (30 - 32) X 1/3.5 ~ —0.571.
If N is even, Py, is the coefficient corresponding to the Nyquist
frequency, if N is odd P% corresponds to the largest positive frequency,
while P% corresponds to the largest negative frequency.

Due to aliasing, w, =
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Response to a short duration load

An approximate procedure to evaluate the maximum displacement
for a short impulse loading is based on the impulse-momentum
relationship,

to

mAx = J [p(t) — kx(t)] dt.
0

When one notes that, for small tg, the displacement is of the order

of t2 while the velocity is in the order of to, it is apparent that the

kx term may be dropped from the above expression, i.e.,

to
mAx = J p(t) dt.

0

SDOF linear
oscillator
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Response to a short duration load SDOF linear
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Using the previous approximation, the velocity at time ty is

x(to) = ;j"p(t) dt,

0

and considering again a negligibly small displacement at the end of
the loading, x(tg) = 0, one has

1o(* Responee to
X(f—fo)'iij p(t) dt sinw,(t — tg). implse

Numerical
0 integration of
Duhamel integral
Relationship

Please note that the above equation is exact for an infinitesimal between time and
impulse loading.

dx(t—1) = p(r:ii)dﬂrsin wp(t—1), t>m,

Undamped SDOF SDOF linear

oscillator

Giacomo Boffi

For an infinitesimal impulse, the impulse-momentum is exactly
p(T) dT and the response is

p(T)dT
mwy,

dx(t—1) = sinwy(t—71), t>r,

and to evaluate the response at time t one has simply to sum all the
infinitesimal contributions for T < t,

Response to
infinitesimal
impulse

1 _ e of
x(t) = —J p(T) sinw,(t—1)dt, t>0. gﬁlhg:_mi';_mgra'
mwn Jo <lattonship

between time and
frequency domain

This relation is known as the Duhamel integral, and tacitly depends
on initial rest conditions for the system.

Jean-Marie Constant Duhamel (Saint-Malo, 5 February 1797 — Paris, 29 April 1872)

Damped SDOF SDOF linear

oscillator
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The derivation of the equation of motion for a generic load is
analogous to what we have seen for undamped SDOF, the
infinitesimal contribution to the response at time t of the load at
time T is

T
dx(t) = p(r) dtsinwp(t—1)exp(—Cwnp(t—1)) t=T
mwp B el
e
and integrating all infinitesimal contributions one has !t:émtlolfgl
Relationship
1 [t PR
x(t) = J p(T) sinwp(t —1)exp(—Cwn(t—1))dt, t=0.
mwp Jo
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Using the trig identity
sin(Wwpt — WKT) = Sin Wyt COS WyT — COS WptSin W,T
the Duhamel integral is rewritten as

_ fé p(T) cos waT dT jé p(T) sinwpTdT

x(t) sinwnt — cos Wyt e

mdn mwp infinitesimal

impulse
. Numerical
= A(t)sin wnt — B(t) cos wpt e of
Duhamel integral
Undamped
SDOF systems
Where Damped SDOF

systems

A(t) = =2 fé p(T) cos w,TdT Relationship

mwp etween time and

p . erronty Chmri
B(t) = mzu“ Jop(T)sinw,yTdT

SDOF linear

Numerical evaluation of Duhamel integral, undamped e

Giacomo Boffi

Usual numerical procedures can be applied to the evaluation of A
and B, e.g., using the trapezoidal rule, one can have, with

A, = A(nAT), v, = p(nAt) cos(nAt) and z, = p(nAt)sin(nAt) we
can write

AT Response to
An+1 = An + e (yn + yn+1) , ;rnrfnpnuilt::imal
2mwn ]
integration of
At Dubarmel mtegral
Bn+1 = Bn + — (Zn + Zn+1) . Undamped
SDOF system
2maws il P

systems

Relationship
etween time and

frequency domain

SDOF linear

Evaluation of Duhamel integral, damped i
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For a damped system, it can be shown that
x(t) = A(t)sinwpt — B(t) coswpt

with

1 [t exp (wnT infsestmal
p(T)———— cos wpTdT, mpulse
0 exp (wpt o of
¢ Duhamel integral
exp LWnT _ d Upiomeed
P 5% St
sin wDT T. Damped SDOF

0 exp (wnt e
Relationship
between time and
frequency domain




Numerical evaluation of Duhamel integral, damped

Numerically, using e.g. Simpson integration rule and
v¥n = p(nAT) coswpr,

Anio = Apexp(—2lw,AT)+

3me

(You can write a similar relationship for B, 2)

[yn exp(—2CwnAT) + 4y 1 exp(—CwnAT) + Yn+2]
n—= 0’ 2' 4.’ ..

SDOF linear
oscillator
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integration of
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Damped SDOF
systems
Relationship
etween time and
frequency domain

Transfer Functions

The response of a linear SDOF system to arbitrary loading can be
evaluated by a convolution integral in the time domain,

x(t) = J;pm h(t— 1) dr,

with the unit impulse response function

h(t) = —2— exp(—Cwnt) sin(wpt), or through the frequency

. MPb .
domain using the Fourier integral

x(t) = J'+oo H(w)P(w)exp(iwt) dw,

—0o0

where H(w) is the complex frequency response function.
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Transfer Functions

These response functions, or transfer functions, are connected by the

direct and inverse Fourier transforms:

Hlw) = Jﬂxj h(t) exp(—iwt) dt,

—00

h(t) = 1J'+OO H(w) exp(iwt) dw.

—0o0

SDOF linear
oscillator
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Relationship of transfer functions

We write the response and its Fourier transform:

x(t) = J;p(’r)h(t— T)dt = Jt p(t)h(t—1)dt

+00 t

X(w) = J U p(t)h(t —T) dT:| exp(—iwt) dt
—00 —00

the lower limit of integration in the first equation was changed from

0 to —oo because p(T) = 0 for T < 0, and since h(t — ) = 0 for

T > t, the upper limit of the second integral in the second equation

can be changed from t to +oo,

+s p+s
X(w) = lim J J p(T)h(t — 1) exp(—iwt) dt dt

S—00 —sJ—s
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Relationship of transfer functions

Introducing a new variable 6 = t — T we have

+s—71

+s
X(w) = lim J p(T) exp(—iwT) d’tJ h(0) exp(—iwO) db

S—00 —s —s—T

with lim s — T = oo, we finally have

SDOF linear
oscillator
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S$—00
00 oo sl
X(w) = J p(T) exp(—iwT) dTJ h(0) exp(—iwO) dO impulse
oo oo Buramel meegra
+o00 Relationship |
- P(w)J h(0) exp(—iwd) dO [l
—0o0
where we have recognized that the first integral is the Fourier
transform of p(t).
Relationship of transfer functions S oslator

Our last relation was
h(0) exp(—iw0O) d6

but X(w) = H(w)P(w), so that, noting that in the above equation
the last integral is just the Fourier transform of h(0), we may
conclude that, effectively, H(w) and h(t) form a Fourier transform
pair.
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