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Nature of Impulsive Loadings

An impulsive load is characterized

I by a single principal impulse, and

I by a relatively short duration.

p(t)

t

I Impulsive or shock loads are of great importance for the design
of certain classes of structural systems, e.g., vehicles or cranes.

I Damping has much less importance in controlling the maximum
response to impulsive loadings because the maximum response
is reached in a very short time, before the damping forces can
dissipate a significant portion of the energy input into the
system.

I For this reason, in the following we’ll consider only the
undamped response to impulsive loads.
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Definition of Peak Response

When dealing with the response to an impulsive loading of duration
t0 of a SDOF system, with natural period of vibration Tn we are
mostly interested in the peak response of the system.

The peak response is the maximum of the absolute value
of the response ratio, Rmax = max {|R(t)|}.

I If t0 � Tn necessarily Rmax happens after the end of the
loading, and its value can be determined studying the free
vibrations of the dynamic system.

I On the other hand, if the excitation lasts enough to have at
least a local extreme (maximum or minimum) during the
excitation we have to consider the more difficult problem of
completely determining the response during the application of
the impulsive loading.
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Half-sine Wave Impulse

The sine-wave impulse has expression

p(t) =

{
p0 sin

πt
t0

= p0 sinωt for 0 < t < t0,

0 otherwise.

p0

0.5 p0

0

t00.5 t0   0.0

p(
t)

time

where ω = 2π
2t0

is the frequency
associated with the load. Note
that ω t0 = π.
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Response to sine-wave impulse

Consider an undamped SDOF initially at rest, with natural period
Tn, excited by a half-sine impulse of duration t0.
The frequency ratio is β = Tn/2t0 and the response ratio in the
interval 0 < t < t0 is

R(t) =
1

1 − β2
(sinωt − β sin

ωt

β
). [NB:

ω

β
= ωn]

It is (1 − β2)R(t0) = −β sin π/β and (1 − β2)Ṙ(t0) = −ω (1 + cos π/β),
consequently for to ≤ t the response ratio is

R(t) =
−β

1 − β2

(
(1 + cos

π

β
)sinωn(t − t0) + sin

π

β
cosωn(t − t0)

)
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Maximum response to sine impulse

We have an extreme, and a possible peak value, for 0 ≤ t ≤ t0 if

Ṙ(t) =
ω

1 − β2
(cosωt − cos

ωt

β
) = 0.

That implies that cosωt = cosωt/β = cos−ωt/β, whose roots are

ωt = ∓ωt/β+ 2nπ, n = 0,∓1,∓2,∓3, . . . .

It is convenient to substitute ωt = πα, where α = t/t0:

πa = π

(
∓ a

β
+ 2n

)
, n = 0,∓1,∓2, . . . , 0 ≤ a ≤ 1.

Eventually solving for α one has

α =
2nβ

β∓ 1
, n = 0,∓1,∓2, . . . , 0 < α < 1.

The next slide regards the characteristics of these roots.
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α(β, n)
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αmax(β,n): locations of response maxima,

αmax(β,n) = (2n β)/(β+1)

αmin(β,n): locations of response minima,

αmin(β,n) = (2n β)/(β‐1)

αmax(β,+1)

αmax(β,‐1)

αmax(β,+2)

αmax(β,‐2)

αmax(β,+3)
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αmin(β,+3)

αmin(β,‐3)

αmin(β,+4)

αmin(β,‐4)
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α(β, n)

In summary, to find the maximum of the response for an assigned
β < 1, one has (a) to compute all αk = 2kβ

β+1 until a root is greater
than 1, (b) compute all the responses for tk = αkt0, (c) choose the
maximum of the maxima.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1/9 1/5 1/3 1

97 5 3 1 1/2

α
 =

 t
/t

o
 |:

 v
e

l=
0

β

2t0/Tn

αmax(β,n): locations of response maxima,

αmax(β,n) = (2n β)/(β+1)

αmin(β,n): locations of response minima,

αmin(β,n) = (2n β)/(β‐1)
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- No roots of type αmin for
n > 0;

- no roots of type αmax for
n < 0;

- no roots for β > 1, i.e.,

no roots for t0 <
Tn
2

;

- only one root of type
αmax for 1

3
< β < 1, i.e.,

Tn
2
< t0 <

3Tn
2

;

- three roots, two maxima
and one minimum, for
1
5
< β < 1

3
;

- five roots, three maxima
and two minima, for
1
7
< β < 1

5
;

- etc etc.
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Maximum response for β > 1

For β > 1, the maximum response takes place for t > t0, and its
absolute value (see slide Response to sine-wave impulse) is

Rmax =
β

1 − β2

√
(1 + cos

π

β
)2 + sin2 π

β
,

using a simple trigonometric identity we can write

Rmax =
β

1 − β2

√
2 + 2 cos

π

β

but 1 + cos 2φ = (cos2φ+ sin2φ) + (cos2φ− sin2φ) = 2 cos2φ,
so that

Rmax =
2β

1 − β2
cos

π

2β
.
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Rectangular Impulse

Consider a rectangular impulse of duration t0,

p(t) = p0

{
1 for 0 < t < t0,

0 otherwise. 0

po

0 to

The response ratio and its time derivative are

R(t) = 1 − cosωnt, Ṙ(t) = ωn sinωnt,

and we recognize that we have maxima Rmax = 2 for ωnt = nπ,
with the condition t ≤ t0. Hence we have no maximum during the
loading phase for t0 < Tn/2, and at least one maximum, of value
2∆st , if t0 ≥ Tn/2.
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Rectangular Impulse (2)

For shorter impulses, the maximum response ratio is not attained
during loading, so we have to compute the amplitude of the free
vibrations after the end of loading (remember, as t0 ≤ Tn/2 the
velocity is positive at t = t0!).

R(t) = (1 − cosωnt0) cosωn(t − t0) + (sinωnt0) sinωn(t − t0).

The amplitude of the response ratio is then

A =

√
(1 − cosωnt0)2 + sin2ωnt0 =

=
√

2(1 − cosωnt0) = 2 sin
ωnt0

2
.
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Triangular Impulse

Let’s consider the response of a SDOF to a triangular impulse,

p(t) = p0 (1 − t/t0) for 0 < t < t0 0

po

0 to

As usual, we must start finding the minimum duration that gives
place to a maximum of the response in the loading phase, that is

R(t) =
1

ωnt0
sinωn

t

t0
− cosωn

t

t0
+ 1 −

t

t0
, 0 < t < t0.

Taking the first derivative and setting it to zero, one can see that
the first maximum occurs for t = t0 for t0 = 0.37101Tn, and
substituting one can see that Rmax = 1.

SDOF linear
oscillator

G. Boffi

Response to
Impulsive Loading

Introduction

Response to Half-Sine
Wave Impulse

Response for
Rectangular and
Triangular Impulses

Shock or response
spectra

Approximate Analysis
of Response Peak

Review

Step-by-step
Methods

Examples of SbS
Methods

Triangular Impulse (2)

For load durations shorter than 0.37101Tn, the maximum occurs
after loading and it’s necessary to compute the displacement and
velocity at the end of the load phase.
For longer loads, the maxima are in the load phase, so that one has
to find the all the roots of Ṙ(t), compute all the extreme values and
finally sort out the absolute value maximum.
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Shock or response spectra

We have seen that the response ratio is determined by the ratio of the impulse duration
to the natural period of the oscillator. One can plot the maximum displacement ratio
Rmax as a function of to/Tn for various forms of impulsive loads.
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Such plots are commonly known as displacement-response spectra, or simply as
response spectra.
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Approximate Analysis

For long duration loadings, the maximum response ratio depends on
the rate of the increase of the load to its maximum: for a step
function we have a maximum response ratio of 2, for a slowly
varying load we tend to a quasi-static response, hence a factor u 1

On the other hand, for short duration loads, the maximum
displacement is in the free vibration phase, and its amplitude
depends on the work done on the system by the load.
The response ratio depends further on the maximum value of the
load impulse, so we can say that the maximum displacement is a
more significant measure of response.
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Approximate Analysis (2)

An approximate procedure to evaluate the maximum displacement
for a short impulse loading is based on the impulse-momentum
relationship,

m∆ẋ =

∫ t0

0
[p(t) − kx(t)] dt.

When one notes that, for small t0, the displacement is of the order
of t2

0 while the velocity is in the order of t0, it is apparent that the
kx term may be dropped from the above expression, i.e.,

m∆ẋ u
∫ t0

0
p(t) dt.
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Approximate Analysis (3)

Using the previous approximation, the velocity at time t0 is

ẋ(t0) =
1

m

∫ t0

0
p(t) dt,

and considering again a negligibly small displacement at the end of
the loading, x(t0) u 0, one has

x(t − t0) u
∫t0

0 p(t) dt

mωn
sinωn(t − t0).

Please note that the above equation is exact for an infinitesimal
impulse loading.
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Previous Methods

Both the Duhamel integral and the Fourier transform methods lie on
on the principle of superposition, i.e., superposition of the responses

I to a succession of infinitesimal impulses, using a convolution
(Duhamel) integral, when operating in time domain

I to an infinity of infinitesimal harmonic components, using the
frequency response function, when operating in frequency
domain.

The principle of superposition implies linearity, but this assumption
is often invalid, e.g., a severe earthquake is expected to induce
inelastic deformation in a code-designed structure.
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State Vector, Linear and Non Linear Systems

The internal state of a linear dynamical system, considering that the
mass, the damping and the stiffness do not vary during the
excitation, is described in terms of its displacements and its velocity,
i.e., the so called state vector

x =

[
x(t)
ẋ(t)

]
.

For a non linear system the state vector must include other
information, e.g. the current tangent stiffness, the cumulated plastic
deformations, the internal damage, ...
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Step-by-step Methods

The so-called step-by-step methods restrict the assumption of
linearity to the duration of a (usually short) time step .

Given an initial system state, in step-by-step methods we divide the
time in steps of known, short duration hi (usually hi = h, a
constant) and from the initial system state at the beginning of each
step we compute the final system state at the end of each step.

The final state vector in step i will be the initial state in the
subsequent step, i + 1.
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Step-by-step Methods, 2

Operating independently the analysis for each time step there are no
requirements for superposition and non linear behaviour can be
considered assuming that the structural properties remain constant
during each time step.

In many cases, the non linear behaviour can be reasonably
approximated by a local linear model, valid for the duration of the
time step.

If the approximation is not good enough, usually a better
approximation can be obtained reducing the time step.
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Advantages of s-b-s methods

Generality step-by-step methods can deal with every kind of
non-linearity, e.g., variation in mass or damping or
variation in geometry and not only with mechanical
non-linearities.

Efficiency step-by-step methods are very efficient and are usually
preferred also for linear systems in place of Duhamel
integral.

Extensibility step-by-step methods can be easily extended to
systems with many degrees of freedom, simply using
matrices and vectors in place of scalar quantities.
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Disadvantages of s-b-s methods

The step-by-step methods are approximate numerical methods, that
can give only an approximation of true response. The causes of
error are

roundoff using too few digits in calculations.

truncation using too few terms in series expressions of quantities,

instability the amplification of errors deriving from roundoff,
truncation or modeling in one time step in all following
time steps, usually depending on the time step
duration.

Errors may be classified as

I phase shifts or change in frequency of the response,

I artificial damping, the numerical procedure removes or adds
energy to the dynamic system.
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Central Differences Method
Methods based on Integration
Constant Acceleration Method
Linear Acceleration Method
Newmark Beta Methods
Specialising for Non Linear Systems
Modified Newton-Raphson Method
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Piecewise exact method

I We use the exact solution of the equation of motion for a
system excited by a linearly varying force, so the source of all
errors lies in the piecewise linearisation of the force function
and in the approximation due to a local linear model.

I We will see that an appropriate time step can be decided in
terms of the number of points required to accurately describe
either the force or the response function.
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Piecewise exact method

For a generic time step of duration h, consider

I {x0, ẋ0} the initial state vector,

I p0 and p1, the values of p(t) at the start and the end of the
integration step,

I the linearised force

p(τ) = p0 + ατ, 0 ≤ τ ≤ h, α = (p(h) − p(0))/h,

I the forced response

x = e−ζωτ(A sin(ωDτ) + B cos(ωDτ)) + (αkτ+ kp0 − αc)/k
2,

where k and c are the stiffness and damping of the SDOF
system.
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Piecewise exact method

Evaluating the response x and the velocity ẋ for τ = 0 and equating
to {x0, ẋ0}, writing ∆st = p(0)/k and δ(∆st) = (p(h) − p(0))/k , one
can find A and B

A =

(
ẋ0 + ζωB −

δ(∆st)

h

)
1

ωD

B = x0 +
2ζ

ω

δ(∆st)

h
− ∆st

substituting and evaluating for τ = h one finds the state vector at
the end of the step.
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Piecewise exact method

With

Sζ,h = sin(ωDh) exp(−ζωh) and Cζ,h = cos(ωDh) exp(−ζωh)

and the previous definitions of ∆st and δ(∆st), finally we can write

x(h) = ASζ,h + B Cζ,h + (∆st + δ(∆st)) −
2ζ

ω

δ(∆st)

h

ẋ(h) = A(ωDCζ,h − ζωSζ,h) − B(ζωCζ,h +ωDSζ,h) +
δ(∆st)

h

where

B = x0 +
2ζ

ω

δ(∆st)

h
− ∆st , A =

(
ẋ0 + ζωB −

δ(∆st)

h

)
1

ωD
.
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Example

We have a damped system that is excited by a load in resonance
with the system, we know the exact response and we want to
compute a step-by-step approximation using different step lengths.

m=1000kg,

k=4π2 1000N/m,

ω=2π,

ζ=0.05,

p(t) =
4π25 N sin(2π t)

-0.03

-0.02

-0.01
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D
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m

]

Time [s]

Exact
h=T/4
h=T/8

h=T/16

It is apparent that you have a very good approximation when the
linearised loading is a very good approximation of the input
function, let’s say h ≤ T/10.



SDOF linear
oscillator

G. Boffi

Response to
Impulsive Loading

Review

Step-by-step
Methods

Examples of SbS
Methods

Piecewise Exact

Central Differences

Integration

Constant Acceleration

Linear Acceleration

Newmark Beta

Non Linear Systems

Newton-Raphson

Central differences

To derive the Central Differences Method, we write the eq. of
motion at time τ = 0 and find the initial acceleration,

mẍ0 + cẋ0 + kx0 = p0 ⇒ ẍ0 =
1

m
(p0 − cẋ0 − kx0)

On the other hand, the initial acceleration can be expressed in terms
of finite differences,

ẍ0 =
x1 − 2x0 + x−1

h2
=

1

m
(p0 − cẋ0 − kx0)

solving for x1

x1 = 2x0 − x−1 +
h2

m
(p0 − cẋ0 − kx0)
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Central differences

We have an expression for x1, the displacement at the end of the step,

x1 = 2x0 − x−1 +
h2

m
(p0 − cẋ0 − kx0),

but we have an additional unknown, x−1... if we write the finite differences
approximation to ẋ0 we can find an approximation to x−1 in terms of the
initial velocity ẋ0 and the unknown x1

ẋ0 =
x1 − x−1

2h
⇒ x−1 = x1 − 2hẋ0

Substituting in the previous equation

x1 = 2x0 − x1 + 2hẋ0 +
h2

m
(p0 − cẋ0 − kx0),

and solving for x1

x1 = x0 + hẋ0 +
h2

2m
(p0 − cẋ0 − kx0)
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Central differences

x1 = x0 + hẋ0 +
h2

2m
(p0 − cẋ0 − kx0)

To start a new step, we need the value of ẋ1, but we may
approximate the mean velocity, again, by finite differences

ẋ0 + ẋ1

2
=

x1 − x0

h
⇒ ẋ1 =

2(x1 − x0)

h
− ẋ0

The method is very simple, but it is conditionally stable. The
stability condition is defined with respect to the natural frequency,
or the natural period, of the SDOF oscillator,

ωnh ≤ 2⇒ h ≤ Tn

π
≈ 0.32Tn

For a SDOF this is not relevant because, as we have seen in our
previous example, we need more points for response cycle to
correctly represent the response.



SDOF linear
oscillator

G. Boffi

Response to
Impulsive Loading

Review

Step-by-step
Methods

Examples of SbS
Methods

Piecewise Exact

Central Differences

Integration

Constant Acceleration

Linear Acceleration

Newmark Beta

Non Linear Systems

Newton-Raphson

Methods based on Integration

We will make use of an hypothesis on the variation of the
acceleration during the time step and of analytical integration of
acceleration and velocity to step forward from the initial to the final
condition for each time step.
In general, these methods are based on the two equations

ẋ1 = ẋ0 +

∫h

0
ẍ(τ) dτ,

x1 = x0 +

∫h

0
ẋ(τ) dτ,

which express the final velocity and the final displacement in terms
of the initial values x0 and ẋ0 and some definite integrals that
depend on the assumed variation of the acceleration during the time
step.
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Integration Methods

Depending on the different assumption we can make on the
variation of velocity, different integration methods can be derived.
We will see

I the constant acceleration method,

I the linear acceleration method,

I the family of methods known as Newmark Beta Methods, that
comprises the previous methods as particular cases.
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Constant Acceleration

Here we assume that the acceleration is constant during each time
step, equal to the mean value of the initial and final values:

ẍ(τ) = ẍ0 + ∆ẍ/2,

where ∆ẍ = ẍ1 − ẍ0, hence

ẋ1 = ẋ0 +

∫h

0
(ẍ0 + ∆ẍ/2) dτ

⇒ ∆ẋ = ẍ0h + ∆ẍh/2

x1 = x0 +

∫h

0
(ẋ0 + (ẍ0 + ∆ẍ/2)τ)dτ

⇒ ∆x = ẋ0h + (ẍ0)h
2/2 + ∆ẍh2/4
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Constant acceleration

Taking into account the two equations on the right of the previous
slide, and solving for ∆ẋ and ∆ẍ in terms of ∆x , we have

∆ẋ =
2∆x − 2hẋ0

h
, ∆ẍ =

4∆x − 4hẋ0 − 2ẍ0h
2

h2
.

We have two equations and three unknowns... Assuming that the
system characteristics are constant during a single step, we can
write the equation of motion at times τ = h and τ = 0, subtract
member by member and write the incremental equation of motion

m∆ẍ + c∆ẋ + k∆x = ∆p,

that is a third equation that relates our unknowns.
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Constant acceleration

Substituting the above expressions for ∆ẋ and ∆ẍ in the
incremental eq. of motion and solving for ∆x gives, finally,

∆x =
p̃

k̃
, ∆ẋ =

2∆x − 2hẋ0

h

where

k̃ = k +
2c

h
+

4m

h2

p̃ = ∆p + 2cẋ0 +m(2ẍ0 +
4

h
ẋ0)

While it is possible to compute the final acceleration in terms of ∆x ,
to achieve a better accuracy it is usually computed solving the
equation of equilibrium written at the end of the time step.
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Constant Acceleration

Two further remarks

1. The method is unconditionally stable

2. The effective stiffness, disregarding damping, is k̃ ≈ k + 4m/h2.

Dividing both members of the above equation by k it is

k̃

k
= 1 +

4

ω2
n h2

= 1 +
4

(2π/Tn)2 h2
=

T 2
n

π2h2
,

The number nT of time steps in a period Tn is related to the time step duration,
nT = Tn/h, solving for h and substituting in our last equation, we have

k̃

k
≈ 1 +

n2
T

π2

For, e.g., nT = 2π it is k̃/k ≈ 1 + 4, the mass contribution to the effective
stiffness is four times the elastic stiffness and the 80% of the total.
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Linear Acceleration

We assume that the acceleration is linear, i.e.

ẍ(t) = ẍ0 + ∆ẍ
τ

h

hence

∆ẋ = ẍ0h + ∆ẍh/2, ∆x = ẋ0h + ẍ0h
2/2 + ∆ẍh2/6

Following a derivation similar to what we have seen in the case of
constant acceleration, we can write, again,

∆x =
(
k + 3

c

h
+ 6

m

h2

)−1
[
∆p + c(ẍ0

h

2
+ 3ẋ0) +m(3ẍ0 + 6

ẋ0

h
)

]

∆ẋ = ∆x
3

h
− 3ẋ0 − ẍ0

h

2
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Linear Acceleration

The linear acceleration method is conditionally stable, the stability
condition being

h

T
≤
√

3

π
≈ 0.55

When dealing with SDOF systems, this condition is never of
concern, as we need a shorter step to accurately describe the
response of the oscillator, let’s say h ≤ 0.12T ...
When stability is not a concern, the accuracy of the linear
acceleration method is far superior to the accuracy of the constant
acceleration method, so that this is the method of choice for the
analysis of SDOF systems.
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Newmark Beta Methods

The constant and linear acceleration methods are just two members
of the family of Newmark Beta methods, where we write

∆ẋ = (1 − γ)hẍ0 + γhẍ1

∆x = hẋ0 + (
1

2
− β)h2ẍ0 + βh

2ẍ1

The factor γ weights the influence of the initial and final
accelerations on the velocity increment, while β has a similar role
with respect to the displacement increment.
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Newmark Beta Methods

Using γ 6= 1/2 leads to numerical damping, so when analysing
SDOF systems, one uses γ = 1/2 (numerical damping may be
desirable when dealing with MDOF systems).
Using β = 1

4 leads to the constant acceleration method, while
β = 1

6 leads to the linear acceleration method. In the context of
MDOF analysis, it’s worth knowing what is the minimum β that
leads to an unconditionally stable behaviour.
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Newmark Beta Methods

The general format for the solution of the incremental equation of
motion using the Newmark Beta Method can be written as follows:

∆x =
∆p̃

k̃

∆v =
γ

β

∆x

h
−
γ

β
v0 + h

(
1 −

γ

2β

)
a0

with

k̃ = k +
γ

β

c

h
+

1

β

m

h2

∆p̃ = ∆p +

(
h

(
γ

2β
− 1

)
c +

1

2β
m

)
a0 +

(
γ

β
c +

1

β

m

h

)
v0
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Non Linear Systems

A convenient procedure for integrating the response of a non linear
system is based on the incremental formulation of the equation of
motion, where for the stiffness and the damping were taken values
representative of their variation during the time step: in line of
principle, the mean values of stiffness and damping during the time
step, or, as this is usually not possible, their initial values, k0 and c0.
The Newton-Raphson method can be used to reduce the
unbalanced forces at the end of the step.
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Non Linear Systems

Usually we use the modified Newton-Raphson method, characterised
by not updating the system stiffness at each iteration. In
pseudo-code, referring for example to the Newmark Beta Method

x1,v1,f1 = x0,v0,f0 % initialisation; gb=gamma/beta

Dr = DpTilde

loop:

Dx = Dr/kTilde

x2 = x1 + Dx

v2 = gb*Dx/h + (1-gb)*v1 + (1-gb/2)*h*a0

x_pl = update_u_pl(...)

f2 = k*(x2-x_pl)

% important

Df = (f2-f1) + (kTilde-k_ini)*Dx

Dr = Dr - Df

x1, v1, f1 = x2, v2, f2

if ( tol(...) < req_tol ) BREAK loop
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Exercise

A system has a mass m = 1000kg, a stiffness k = 40000N/m and a
viscous damping whose ratio to the critical damping is ζ = 0.03.
The spring is elastoplastic, with a yielding force of 2500N.
The load is an half-sine impulse, with duration 0.3s and maximum
value of 6000N.
Use the constant acceleration method to integrate the response,
with h = 0.05s and, successively, h = 0.02s . Note that the stiffness
is either 0 or k , write down the expression for the effective stiffness
and loading in the incremental formulation, write a spreadsheet or a
program to make the computations.


