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Introductory Remarks

Until now our SDOF's were described as composed by a single mass
connected to a fixed reference by means of a spring and a damper.
While the mass-spring is a useful representation, many different,
more complex systems can be studied as SDOF systems, either
exactly or under some simplifying assumption.
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Introductory Remarks

Until now our SDOF's were described as composed by a single mass
connected to a fixed reference by means of a spring and a damper.
While the mass-spring is a useful representation, many different,
more complex systems can be studied as SDOF systems, either
exactly or under some simplifying assumption.

1. SDOF rigid body assemblages, where the flexibility is
concentrated in a number of springs and dampers, can be
studied, e.g., using the Principle of Virtual Displacements and
the D'Alembert Principle.

2. simple structural systems can be studied, in an approximate

manner, assuming a fixed pattern of displacements, whose
amplitude (the single degree of freedom) varies with time.
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Further Remarks on Rigid Assemblages

Today we restrict our consideration to plane, 2-D systems.

In rigid body assemblages the limitation to a single shape of
displacement is a consequence of the configuration of the system,
i.e., the disposition of supports and internal hinges.

When the equation of motion is written in terms of a single
parameter and its time derivatives, the terms that figure as
coefficients in the equation of motion can be regarded as the
generalised properties of the assemblage: generalised mass, damping
and stiffness on left hand, generalised loading on right hand.

mX + ¢*x + k*x = p*(t)
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Further Remarks on Continuous Systems

Continuous systems have an infinite variety of deformation patterns.
By restricting the deformation to a single shape of varying
amplitude, we introduce an infinity of internal contstraints that limit
the infinite variety of deformation patterns, but under this
assumption the system configuration is mathematically described by
a single parameter, so that

» our model can be analysed in exactly the same way as a strict
SDOF system,

» we can compute the generalised mass, damping, stiffness
properties of the SDOF model of the continuous system.
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Final Remarks on Generalised SDOF Systems

From the previous comments, it should be apparent that everything
we have seen regarding the behaviour and the integration of the
equation of motion of proper SDOF systems applies to rigid body
assemblages and to SDOF models of flexible systems, provided that
we have the means for determining the generalised properties of the
dynamical systems under investigation.
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Assemblages of Rigid Bodies

» planar, or bidimensional, rigid bodies, constrained to move in a
plane,
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Assemblages of Rigid Bodies

» planar, or bidimensional, rigid bodies, constrained to move in a
plane,

> the flexibility is concentrated in discrete elements, springs and
dampers,
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Assemblages of Rigid Bodies

» planar, or bidimensional, rigid bodies, constrained to move in a
plane,

> the flexibility is concentrated in discrete elements, springs and
dampers,

» rigid bodies are connected to a fixed reference and to each
other by means of springs, dampers and smooth, bilateral
constraints (read hinges, double pendulums and rollers),
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Assemblages of Rigid Bodies

» planar, or bidimensional, rigid bodies, constrained to move in a
plane,

> the flexibility is concentrated in discrete elements, springs and
dampers,

» rigid bodies are connected to a fixed reference and to each
other by means of springs, dampers and smooth, bilateral
constraints (read hinges, double pendulums and rollers),

» inertial forces are distributed forces, acting on each material
point of each rigid body, their resultant can be described by
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Assemblages of Rigid Bodies

» planar, or bidimensional, rigid bodies, constrained to move in a
plane,

> the flexibility is concentrated in discrete elements, springs and
dampers,

» rigid bodies are connected to a fixed reference and to each
other by means of springs, dampers and smooth, bilateral
constraints (read hinges, double pendulums and rollers),

» inertial forces are distributed forces, acting on each material
point of each rigid body, their resultant can be described by

» a force applied to the centre of mass of the body, proportional
to acceleration vector (of the centre of mass itself) and total
mass M = [dm

» a couple, proportional to angular acceleration and the moment
of inertia ] of the rigid body, ] = [(x*> 4+ y?)dm.
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Rigid Bar

Unit mass
Length

Centre of Mass
Total Mass

Moment of Inertia

<—L4>| X

™M = constant,
L,

XG — L/Q,
m = mlL,
L2 _13

J=m3% ="
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Rigid Rectangle

Unit mass Y = constant,
Sides a, b
Centre of Mass xg =a/2, yg=>b/2
Total Mass m = yab,
2 b2 3b b3
Moment of Inertia ] = m< o _,4o+a

-~

12 YT

b
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Rigid Triangle

For a right triangle.

Unit mass
Sides

Centre of Mass
Total Mass

Moment of Inertia

Y = constant,

m =vyab/2,
a®>+b2 b+ abd
m =y
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Rigid Oval

When a =b = D = 2R the oval is a circle.

1
i

Unit mass
Axes

Centre of Mass

Total Mass

Moment of Inertia

J\f

—
—

= constant,
a, b
XG =Yg =
mtab
m= YT
a’+b?
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p(x,t) =P x/a f(t)
1 | T T ] T H m?\J 2

|=—a } 2a } a } a } a | a—»|

S
HE-
C

The mass of the left bar is m; = M 4a and its moment of inertia is

2
Ji=my (41‘12) = 4a’m;/3.

The maximum value of the external load is Pmax = P4a/a = 4P and
the resultant of triangular load is R = 4P x 4a/2 = 8Pa
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. ] 8Paf(t) .
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The virtual work of the Inertial forces:

7572 787 27257 752
6W|——m12 > _1155_1“ 3 3 _]255
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2
SWex = 8Paf(t )E + N—Z 8z
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The virtual work of the Damping forces:
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The virtual work of the Elastic forces:
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The virtual work of the External forces:
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For a rigid body in condition of equilibrium the total virtual work
must be equal to zero
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SW, + dWp + OWs + OWE,: =0

Substituting our expressions of the virtual work contributions and
simplifying 8Z, the equation of equilibrium is

my mo J1 J2 \ 5
LI LRI S R I
< 7 " 9 - 16a2 * 9(12) *

. 9k; ko
1 —_— — e
+ (ca+c1/ 6)Z+<16 + 9>Z
2 7
P —+N—
8 af(t)3+ 12aZ



Principle of Virtual Displacements el

Giacomo Boffi

Collecting Z and its time derivatives give us

M*Z +c*Z +K*Z = p*f(t)
Assemblage of

introducing the so called generalised properties, in our example it is Rigid Bodies

1 4 1 1
R -9 - T,
mT =gt gdmet ge it g el
C*:EC1+02,

9 1 7
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Collecting Z and its time derivatives give us

M*Z +c*Z +K*Z = p*f(t)
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introducing the so called generalised properties, in our example it is Rigid Bodies
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Collecting Z and its time derivatives give us

M*Z +c*Z +K*Z = p*f(t)
Assemblage of

introducing the so called generalised properties, in our example it is Rigid Bodies

1 4 1 1
* _ - — — PR
m* = 4m1 + 99m2 + 16(1211 + 9(12]2,
c* = Tecr ez
9 1 7
K= ki + ko — —N
1679 12a
16
*x — °Pp
3 ha
It is worth writing down the
expression of k*: K- = 9ky + ko LN
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Collecting Z and its time derivatives give us

M*Z +c*Z +K*Z =p*f(t)

Assemblage of

introducing the so called generalised properties, in our example it is Rigid Bodies
1 4 1 1
* 29 - i
m=gmtgImet gl gl
cr = ic +c
g T
9 1 7
K= kg + -k N
16 9 12a
16
*x P
It is worth writing down the ok Kk .
expression of k*: k=2t 2 TN
16 + 9 12a
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Let's start with an example...

Consider a cantilever, with varying properties m and EJ, subjected to
a load that is function of both time t and position x,

p=7p(x 1)
The transverse displacements v will be function of time and position,

v =v(x, t)
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. and an hypothesis S
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To study the previous problem, we introduce an approximate mode/
by the following hypothesis,

v(x, t) =W(x) Z(1),
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. and an hypothesis S
Giacomo Boffi

To study the previous problem, we introduce an approximate mode/
by the following hypothesis,
v(x, t) =¥(x) Z(t),

Continuous
Systems

that is, the hypothesis of separation of variables

Note that W(x), the shape function, is adimensional, while Z(t) is
dimensionally a generalised displacement, usually chosen to
characterise the structural behaviour.



g and an hypothes|s Generalized
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To study the previous problem, we introduce an approximate mode/
by the following hypothesis,
v(x, t) =¥(x) Z(t),

Continuous
Systems

that is, the hypothesis of separation of variables

Note that W(x), the shape function, is adimensional, while Z(t) is
dimensionally a generalised displacement, usually chosen to
characterise the structural behaviour.

In our example we can use the displacement of the tip of the
chimney, thus implying that W(H) = 1 because

Z(t) =v(H,t) and
v(H,t) =¥Y(H) Z(t)



Principle of Virtual Displacements

For a flexible system, the PoVD states that, at equilibrium,
SWE = 5W,.

The virtual work of external forces can be easily computed, the
virtual work of internal forces is usually approximated by the virtual
work done by bending moments, that is

6W|zJM6X

where X is the curvature and &x the virtual increment of curvature.
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6W Generalized
E SDOF's
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The external forces are p(x,t), N and the forces of inertia f}; we
have, by separation of variables, that 6v = W(x)6Z and we can write

! " Continuous
W, = J p(x, t)dvdx = U p(x, t)¥(x) dx] 82 = p*(t) 62 Continu
0 0

H
—m(x)Vdvdx = J —m(x)¥(x)Z¥(x) dx 8Z

6\/Vlnertia = J
0

0

|

The virtual work done by the axial force deserves a separate
treatment...

JH —m(x)¥3(x) dx] Z(t)8Z =m*Z35Z.
0



6W Generalized
N SDOF'’s
. ) ) L. ) Giacomo Boffi
The virtual work of N is §Wy = Nbéu where du is the variation of the vertical
displacement of the top of the chimney.
We start computing the vertical displacement of the top of the chimney in terms
of the rotation of the axis line, ¢ =~ ¥'(x)Z(t),

H H

cos pdx = J (1 — cos ¢) dx, Continuous

Systems
0 Y

u(t):H—J

0

N L 2. .
substituting the well known approximation cosd ~ 1 — % in the above equation
we have

H 2 H 2 2
u(t):J gdxzj YPZ2
0o 2 0 2
hence
H H
du = J Y2(x)Z(t)6Z dx = J Y2 (x)dx Z6Z
0 0
and

"
SWy = U W2(x) dx N} 7287 =X 7287



6WI nt Generalized

SDOF's

Giacomo Boffi

Approximating the internal work with the work done by bending
moments, for an infinitesimal slice of beam we write

Systems

dWint = %Mv” (x,t)dx = %M\y” (x)Z(t) dx Comitens
with M = EJ(x)v" (x)
d(dWint) = E](X)W”2(X)Z(t)5z dx

integrating

H
OWint = U EJ(x)W"2(x)dx| Z8Z =k*Z5Z
0




Remarks

> the shape function must respect the geometrical boundary
conditions of the problem, i.e., both
X
Y, =x2 d  Wy=1—cos——
1 X an 2 cos H
are accettable shape functions for our example, as
Y1(0) =W5(0) =0 and ¥{(0) =W¥,(0)=0
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Remarks

Vi"/Z(t)

0.2 |
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| f1=1-co‘s(pi*x/2) S
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Remarks

vi'/Z(t)

2.5

1.5

0.5

T T T
[ fi=1-cos(pi*x/2) — /]
: f2 =‘)(E :
[ 1 j
: f2" ]
L | | | | J

X/H

0.8
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0.4
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Remarks

> the shape function must respect the geometrical boundary
conditions of the problem, i.e., both
X
Yy =x? d Wy=1—cos-
1 X an 2 cos H
are accettable shape functions for our example, as
Y1(0) =W5(0) =0 and ¥{(0) =W¥,(0)=0
> better results are obtained when the second derivative of the
shape function at least resembles the typical distribution of
bending moments in our problem, so that between

2

. ; T X
= constant and Yy" = —— cos —
1 2 T a2 T 2H

the second choice is preferable.
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Example

Using W(x) = 1 — cos 77}, with m = constant and E] = constant,

with a load characteristic of seismic excitation, p(t) = —mvg(t),
H 3
m* = ﬁlL (1 —cosﬁ) dx = (5 — —)H
k* =EJ il JH cos? =~ ™E
16H4 |, 2H 32 H3
m2 (1 X s
K =N—>| sin® =dx=_—
G~ N2 L M OH T 8H
H
_ X
Pg = —Mg(t) Jo 1 —cosﬁdx =—

(1-2) mrig (0
s
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» The process of estimating the vibration characteristics of a
complex system is known as vibration analysis.
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» The process of estimating the vibration characteristics of a
complex system is known as vibration analysis.

» We can use our previous results for flexible systems, based on _—
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the SDOF model, to give an estimate of the natural frequency fnabaisty
w2 - k*/m* Meythogd



Vibration Analysis

» The process of estimating the vibration characteristics of a
complex system is known as vibration analysis.

» We can use our previous results for flexible systems, based on
the SDOF model, to give an estimate of the natural frequency
w2 — k*/m*

» A different approach, proposed by Lord Rayleigh, starts from
different premises to give the same results but the Rayleigh'’s
Quotient method is important because it offers a better
understanding of the vibrational behaviour, eventually leading to
successive refinements of the first estimate of w?.
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Rayleigh’'s Quotient Method
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Our focus will be on the free vibration of a flexible, undamped
system.
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Our focus will be on the free vibration of a flexible, undamped
system.
» inspired by the free vibrations of a proper SDOF we write
Z(t) = Zgsin wt and
v(x, t) = Zg¥(x) sin wt, WHsreidter
Analysis b
v(x,t) = w Ze¥(x) cos wt. Rayleigh's

Method
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Our focus will be on the free vibration of a flexible, undamped
system.

» inspired by the free vibrations of a proper SDOF we write

Z(t) = Zgsin wt and
v(x, t) = Zg¥(x) sin wt, WHsreidter

) Analysis by
v(x,t) = w Ze¥(x) cos wt. Rayleigh's
Method
» the displacement and the velocity are in quadrature: when v is
at its maximum v = 0, hence V = Vpax, T = 0 and when v is at

its maximum it is v =0, hence V=0, T = Trax,



Rayleigh’'s Quotient Method Generalized

SDOF's
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Our focus will be on the free vibration of a flexible, undamped
system.

» inspired by the free vibrations of a proper SDOF we write

Z(t) = Zgsin wt and
v(x, t) = Zg¥(x) sin wt, Vet
Analysis by

v(x,t) = w Ze¥(x) cos wt. R

» the displacement and the velocity are in quadrature: when v is
at its maximum v = 0, hence V = Vpax, T = 0 and when v is at
its maximum it is v =0, hence V=0, T = Trax,

» disregarding damping, the energy of the system is constant
during free vibrations,

vmax +0= 0'i‘-l—max



Rayleigh’ s Quotient Method Generalized
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Now we write the expressions for Vi and Tmay,

1
Vmax — 2Z(2)J E](X)WIQ (X) dX,
S

1 . .
252 _ 2 Vibrat
Toax = 20222 [ (W20 dx, i

2 S Rayleigh's

Method
equating the two expressions and solving for w? we have

2 _ jSEJ \y"2()dx
Jgm x)dx

Recognizing the expressions we found for k* and m* we could
question the utility of Rayleigh's Quotient...




Rayleigh’'s Quotient Method

» in Rayleigh's method we know the specific time dependency of
the inertial forces

f1 = —m(x)V = m(x)w?Ze¥(x) sin wt

f| has the same shape we use for displacements.

> if W were the real shape assumed by the structure in free
vibrations, the displacements v due to a loading
fi = w?m(x)¥(x)Zo should be proportional to W(x) through a
constant factor, with equilibrium respected in every point of the
structure during free vibrations.

Generalized
SDOF's

Giacomo Boffi

Vibration
Analysis by
Rayleigh's
Method



Rayleigh's Quotient Method

» in Rayleigh's method we know the specific time dependency of
the inertial forces

f1 = —m(x)V = m(x)w?Ze¥(x) sin wt

f| has the same shape we use for displacements.

> if W were the real shape assumed by the structure in free
vibrations, the displacements v due to a loading
fi = w?m(x)¥(x)Zo should be proportional to W(x) through a
constant factor, with equilibrium respected in every point of the
structure during free vibrations.

» starting from a shape function Wy(x), a new shape function ¥
can be determined normalizing the displacements due to the
inertial forces associated with Wo(x), f; = m(x)Wo(x),
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Rayleigh’'s Quotient Method CE S
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» in Rayleigh's method we know the specific time dependency of
the inertial forces

f1 = —m(x)V = m(x)w?Ze¥(x) sin wt

f| has the same shape we use for displacements.
Vibration

» if W were the real shape assumed by the structure in free Analysis by
vibrations, the displacements v due to a loading Method
fi = w?m(x)¥(x)Zo should be proportional to W(x) through a

constant factor, with equilibrium respected in every point of the
structure during free vibrations.

» starting from a shape function Wy(x), a new shape function ¥
can be determined normalizing the displacements due to the
inertial forces associated with Wo(x), f; = m(x)Wo(x),

> we are going to demonstrate that the new shape function is a
better approximation of the true mode shape



Selection of mode shapes

Given different shape functions W; and considering the true shape of
free vibration W, in the former cases equilibrium is not respected by
the structure itself.
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Selection of mode shapes

Given different shape functions W; and considering the true shape of
free vibration W, in the former cases equilibrium is not respected by
the structure itself.

To keep inertia induced deformation proportional to ¥; we must
consider the presence of additional elastic constraints. This leads to
the following considerations
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Selection of mode shapes

Given different shape functions W; and considering the true shape of
free vibration W, in the former cases equilibrium is not respected by
the structure itself.

To keep inertia induced deformation proportional to ¥; we must
consider the presence of additional elastic constraints. This leads to
the following considerations

> the frequency of vibration of a structure with additional
constraints is higher than the true natural frequency,
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Selection of mode shapes

Given different shape functions W; and considering the true shape of
free vibration W, in the former cases equilibrium is not respected by
the structure itself.

To keep inertia induced deformation proportional to ¥; we must
consider the presence of additional elastic constraints. This leads to
the following considerations

> the frequency of vibration of a structure with additional
constraints is higher than the true natural frequency,

> the criterium to discriminate between different shape functions
is: better shape functions give lower estimates of the natural
frequency, the true natural frequency being a lower bound of all
estimates.
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Selection of mode shapes 2 Generalized

SDOF's

Giacomo Boffi

In general the selection of trial shapes goes through two steps,

1. the analyst considers the flexibilities of different parts of the
structure and the presence of symmetries to devise an
approximate shape,

2. the structure is loaded with constant loads directed as the . ;
. . election o
assumed displacements, the displacements are computed and Mode Shapes
used as the shape function,

of course a little practice helps a lot in the the choice of a proper
pattern of loading...
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Refinement Rog Generaized

Giacomo Boffi
Choose a trial function W(®) (x) and write
V(0 = yl0)(x) 70 gjn wt

Vinax = ;Z(O)2JE]‘P(°)”2 dx
1
Tiax = 2w2Z(0)2JT'n‘P(O)2 dx

Refinement of
Rayleigh's
Estimates

our first estimate Rop of w? is

- IEJ\P(O)//Z dx
[ mw02dx



: Generalized
Refinement Ry; SDOFs
. . . Giacomo Boffi
We try to give a better estimate of V.« computing the external
work done by the inertial forces,

p® = w?m(x)v® = 2O w2yl (x)
the deflections due to p(©) are

(1) (1)
Y Z =
v = w2—2 = wZ‘i’(l)—z

w w
where we write Z(1) because we need to keep the unknown w? in
evidence. The maximum strain energy is

Refinement of

1 1 = Ra)fleigh’s
Vmax = x5 Jp(o)v(l) dx = *(,U4Z(O)Z(1) J]ﬁ(x)\{/(o)\y(l) dx Estimates
2 2
Equating to our previus estimate of Tmax we find the Rp; estimate
m(x 0) dx
o 201

fm 1) dx



Refinement Ry;

With little additional effort it is possible to compute Tmax from v

1

Trnax = wzjﬁl(x)v(m dx = —w®z1)? Jﬁl(x)\y(lﬂ dx

2

equating to our last approximation for Vi,ax we have the Ry
approximation to the frequency of vibration,

1):
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Refinement Ry;

With little additional effort it is possible to compute Tmax from v(1):

1 _
Tmax = 2w2Jﬁ’l(X)v(l)2 dx = *(U6Z(1)2 J'ﬁl(x)\y(lp dx

equating to our last approximation for Vi,ax we have the Ry
approximation to the frequency of vibration,

fmx‘l’ Ddx’

Of course the procedure can be extended to compute better and
better estimates of w? but usually the refinements are not extended
beyond Ri1, because it would be contradictory with the quick
estimate nature of the Rayleigh’s Quotient method
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Refinement Ry;

With little additional effort it is possible to compute Tmax from v(1):

1 1 .-
Tmax - 2w2Jﬁl(X)V(l)2 dx = 5&)62(1)2 Jﬁl(x)w(l)2 dx

equating to our last approximation for Vi,ax we have the Ry
approximation to the frequency of vibration,

2 _ Ofn'lx (0 1)dx

D [m(x)¥ Ddx’

Of course the procedure can be extended to compute better and
better estimates of w? but usually the refinements are not extended
beyond Ri1, because it would be contradictory with the quick
estimate nature of the Rayleigh's Quotient method and also because
R11 estimates are usually very good ones.
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Refinement Example

m
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