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We can separate the two masses, single out the spring forces and,

using the D'Alembert Principle, the inertial forces and, finally. write CoCah
an equation of dynamic equilibrium for each mass. pgEes

Matrices are
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Properties of
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Matrices

An example

moXo — kox1 + (K2 + k3)x2 = pa(t)



The equation of motion of a 2DOF system

With some little rearrangement we have a system of two linear
differential equations in two variables, x1(t) and x5(t):

miXy + (k1 + ko)x1 — koxo = p1(t),
moXo — koxg + (ko + k3)x2 = pa(t).
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The equation of motion of a 2DOF system

Introducing the loading vector p, the vector of inertial forces f; and
the vector of elastic forces fg,

Pl(t)} {fn} {fs 1}
= , f = ! , f = !

P {P2(t) ! f12 s fs2
we can write a vectorial equation of equilibrium:

f1 +fs =p(t).
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stKX

It is possible to write the linear relationship between fs and the

. T. .
vector of displacements x = {X1X2} in terms of a matrix product,
introducing the so called stiffness matrix K.
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stKX

It is possible to write the linear relationship between fs and the
. T. .
vector of displacements x = {X1X2} in terms of a matrix product,

introducing the so called stiffness matrix K.
In our example it is

k1 + k2 —ko

f
S —ko ko +ks
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It is possible to write the linear relationship between fs and the An Example
. T . . The.Equation of
vector of displacements x = {X1X2} in terms of a matrix product, Meten
introducing the so called stiffness matrix K. Propweis of
. - Structural
In our example it is X‘m;‘ces |
n example
k1 + ko —ko
fs = x =Kx
—ko ko + k3

The stiffness matrix K has a number of rows equal to the number of
elastic forces, i.e., one force for each DOF and a number of columns
equal to the number of the DOF.

The stiffness matrix K is hence a square matrix K
ndofx ndof



fi=Mx

Analogously, introducing the mass matrix M that, for our example, is

I LS 0
M=[3
we can write
f1 = MX.

Also the mass matrix M is a square matrix, with number of rows
and columns equal to the number of DOF's.
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Matrix Equation

Finally it is possible to write the equation of motion in matrix format:

Mx + Kx =p(t).
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Matrix Equation

Finally it is possible to write the equation of motion in matrix format:

Mx + Kx =p(t).

Of course it is possible to take into consideration also the
damping forces, taking into account the velocity vector x and
introducing a damping matrix C too, so that we can eventually
write

Mx + Cx+ Kx =p(t).
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Matrix Equation

Finally it is possible to write the equation of motion in matrix format:

Mx + Kx =p(t).

Of course it is possible to take into consideration also the
damping forces, taking into account the velocity vector x and
introducing a damping matrix C too, so that we can eventually
write

Mx + Cx+ Kx =p(t).

But today we are focused on undamped systems...
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Properties of K

» K is symmetrical.
The elastic force exerted on mass i due to an unit displacement
of mass j, fs i = kij is equal to the force kj; exerted on mass j
due to an unit diplacement of mass i, in virtue of Betti’s
theorem (also known as Maxwell-Betti reciprocal work theorem).
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» K is symmetrical.
The elastic force exerted on mass i due to an unit displacement

An Example

of mass j, fs i = kij is equal to the force kj; exerted on mass j The Equation of
due to an unit diplacement of mass 1, in virtue of Betti’s oseme
theorem (also known as Maxwell-Betti reciprocal work theorem). — gebsmict o
Matrices
» K is a positive definite matrix. An example
The strain energy V for a discrete system is
1
V= _x"fg,
2
and expressing fs in terms of K and x we have
1
V= ExTKx,

and because the strain energy is positive for x # 0 it follows
that K is definite positive.



Properties of M

Restricting our discussion to systems whose degrees of freedom are
the displacements of a set of discrete masses, we have that the mass
matrix is a diagonal matrix, with all its diagonal elements greater
than zero. Such a matrix is symmetrical and definite positive.

Both the mass and the stiffness matrix are symmetrical and definite
positive.
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Properties of M

Restricting our discussion to systems whose degrees of freedom are
the displacements of a set of discrete masses, we have that the mass
matrix is a diagonal matrix, with all its diagonal elements greater
than zero. Such a matrix is symmetrical and definite positive.

Both the mass and the stiffness matrix are symmetrical and definite
positive.

Note that the kinetic energy for a discrete system can be
written

1. .
T= EXTMX.
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Generalisation of previous results

The findings in the previous two slides can be generalised to the
structural matrices of generic structural systems, with two main
exceptions.
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The findings in the previous two slides can be generalised to the S S

structural matrices of generic structural systems, with two main e

exceptions. %o:‘:ozl:ofm
1. For a general structural system, in which not all DOFs are An cxamrle

related to a mass, M could be semi-definite positive, that is for
some particular displacement vector the kinetic energy is zero.
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The findings in the previous two slides can be generalised to the S S

structural matrices of generic structural systems, with two main e

exceptions. %‘olr‘:ozl:ofm
1. For a general structural system, in which not all DOFs are An cxamrle

related to a mass, M could be semi-definite positive, that is for
some particular displacement vector the kinetic energy is zero.

2. For a general structural system subjected to axial loads, due to
the presence of geometrical stiffness it is possible that for some
particular displacement vector the strain energy is zero and K is
semi-definite positive.



The problem

Graphical statement of the problem

pt) >

my mp
k1 ko
X1 X2
kl = 2k, k2 = k; mp = 2TTL, mo =M,

p(t) = posin wt.
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Graphical statement of the problem

P(t) An Example
The Equation of
Motion
Matri
m]_ m2 Lii:;rce(;:::ators
kl kg Properties of
Structura
Matrices
L e L e An example
X1 X2
ki1 =2k, ko =k; m; =2m, Mmp,=m;

p(t) = posin wt.

The equations of motion
miX1 + kix1 + ko (x1 — x2) = po sin wt,

moXo + ko (xp —x1) = 0.



The problem

Graphical statement of the problem

pt) >

k1 ko

e - e -
X1 X2

ki =2k, kpy=k; m; =2m, mpy=m;
p(t) = posin wt.
The equations of motion
miX1 + kix1 + ko (x1 — x2) = po sin wt,
moXo + ko (xp —x1) = 0.

... but we prefer the matrix notation ...
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The steady state solution

We prefer the matrix notation because we can find the steady-state
response of a SDOF system exactly as we found the s-s solution for
a SDOF system.

Substituting x(t) = & sin wt in the equation of motion and
simplifying sin wt,

3 -1 »[2 01, [1
o e merls el
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The steady state solution

We prefer the matrix notation because we can find the steady-state
response of a SDOF system exactly as we found the s-s solution for
a SDOF system.

Substituting x(t) = & sin wt in the equation of motion and
simplifying sin wt,

3 -1 »[2 01, [1
o e merls el

dividing by k, with w3 =k/m, B2 = w?/w3 and Ay = po/k the
above equation can be written
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The steady state solution

We prefer the matrix notation because we can find the steady-state
response of a SDOF system exactly as we found the s-s solution for
a SDOF system.

Substituting x(t) = & sin wt in the equation of motion and
simplifying sin wt,

3 -1 22 01, [1
o e merls el

dividing by k, with w3 =k/m, B2 = w?/w3 and Ay = po/k the
above equation can be written

(R ) L R L
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The determinant of the matrix of coefficients is

4 2 n Example
Det = 2B* —5p2 42 The aomion of
Motion

Matrices are

but we want to write the polynomial in 3 in terms of its roots -

Properties of
Structura
Matrices

Det =2 x (B2 —1/2) x (B2 —2). e

Solving for &/Ag in terms of the inverse of the coefficient matrix
gives
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The determinant of the matrix of coefficients is

Det = 2p* —5p% 42 E
A
but we want to write the polynomial in 3 in terms of its roots Propertas of |
i
Det =2 x (B2 —1/2) x (B2 —2). An eramele

Solving for &/Ag in terms of the inverse of the coefficient matrix
gives

wc s s o)
Ag 2(p2-1)(p2-2)[ 1 3-2p%| 10
1
)

)
B2-2) L 1 ]

2([32_

N[=



The solution, graphically

Normalized displacement

steady-state response for a 2 dof system, harmonic load

§1/Ast
EofAst == = -

T
1
1
1
1
\
A}

B2=w?/w3
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Comment to the Steady State Solution
The steady state solution is

_ 1 1-p2) .
XS_S_AStz(B2—%)([32—2) { 1 }smwt.

As it's apparent in the previous slide, we have two different values of the
excitation frequency for which the dynamic amplification factor goes to
infinity.
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Comment to the Steady State Solution

The steady state solution is

_ 1 1-p2) .
XS_S_AStZ(Bz—%)(B2—2) { 1 }smwt.

As it's apparent in the previous slide, we have two different values of the
excitation frequency for which the dynamic amplification factor goes to
infinity.

For an undamped SDOF system, we had a single frequency of excitation
that excites a resonant response, now for a two degrees of freedom system

we have two different excitation frequencies that excite a resonant
response.
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Comment to the Steady State Solution Generalized
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The steady state solution is

An Example

1 1—pB2) .
Xes = A t. Vo (et off
S-S Stz(Bz %)([52 2) { 1 } sinw ;\rﬂotioEn

Matrices are
Linear Operators

.y . . . . Properties of
As it's apparent in the previous slide, we have two different values of the gﬂc;{:c;tcu:rsal
excitation frequency for which the dynamic amplification factor goes to An example
infinity.

For an undamped SDOF system, we had a single frequency of excitation
that excites a resonant response, now for a two degrees of freedom system
we have two different excitation frequencies that excite a resonant
response.

We know how to compute a particular integral for a MDOF
system (at least for a harmonic loading), what do we miss to be
able to determine the integral of motion?
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the homogeneous solution.

Let's start writing the homogeneous equation of motion,

Mx+Kx =0.
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Homogeneous equation of motion

To understand the behaviour of a MDOF system, we have to study
the homogeneous solution.
Let's start writing the homogeneous equation of motion,

Mx+Kx =0.

The solution, in analogy with the SDOF case, can be written in
terms of a harmonic function of unknown frequency and, using the
concept of separation of variables, of a constant vector, the so called
shape vector \:

x(t) = P (A sin wt + B cos wt).
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Homogeneous equation of motion Generalized
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To understand the behaviour of a MDOF system, we have to study
the homogeneous solution.
Let's start writing the homogeneous equation of motion,

Mx +Kx =0. The
S
Motion
H H . . H igenvalues and
The solution, in analogy with the SDOF case, can be written in Eigenvactors
. . . Eigenvectors are
terms of a harmonic function of unknown frequency and, using the Orthoganal

concept of separation of variables, of a constant vector, the so called
shape vector \:

x(t) = P (A sin wt + B cos wt).
Substituting in the equation of motion, we have

(K — w?M) P(Asin wt + Bcoswt) =0



Eigenvalues

The previous equation must hold for every value of t, so it can be
simplified removing the time dependency:

(K—w?M)yp =0.
This is a homogeneous linear equation, with unknowns {; and the
coefficients that depends on the parameter w?.
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The previous equation must hold for every value of t, so it can be
simplified removing the time dependency:

(K—w’M)p = 0.

This is a homogeneous linear equation, with unknowns 1{; and the s

coefficients that depends on the parameter w?. LT
Motion

Speaking of homogeneous systems, we know that Eigenvalues and
Eigenvectors

Eigenvectors are

» there is always a trivial solution, { = 0, and Orthagona

» non-trivial solutions are possible if the determinant of the matrix of
coefficients is equal to zero,

det (K — w’M) =0
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The previous equation must hold for every value of t, so it can be
simplified removing the time dependency:

(K—w’M)p = 0.

This is a homogeneous linear equation, with unknowns 1{; and the

The
coefficients that depends on the parameter w?. LT
. Motion
Speaking of homogeneous systems, we know that Eigenvalues and
Eigenvectors
. .. . Eigenvectors are
» there is always a trivial solution, { = 0, and Orihogonal

» non-trivial solutions are possible if the determinant of the matrix of
coefficients is equal to zero,

det (K — w’M) =0
The eigenvalues of the MDOF system are the values of w? for which the

above equation (the equation of frequencies) is verified or, in other words,
the frequencies of vibration associated with the shapes for which

K sin wt = w?Map sin wt.
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For a system with N degrees of freedom the expansion of

det (K — w?M) is an algebraic polynomial of degree N in w?.

A polynomial of degree N has exactly N roots, either real or The
Homogeneous

complex conjugate. Equation of
Eggenvaluu and

In Dynamics of Structures those roots wf, i=1,...,N are all real T
Orthogonal

because the structural matrices are symmetric matrices.

Moreover, if both K and M are positive definite matrices (a
condition that is always satisfied by stable structural systems) all the
roots, all the eigenvalues, are strictly positive:

w?>0,  fori=1,...,N.
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Substituting one of the N roots w? in the characteristic equation, The
Dot o
2 M-otion
(K—wiM) i =0 Emialues wnd
Eigenvectors are
Orthogona

the resulting system of N — 1 linearly independent equations can be

solved (except for a scale factor) for 1, the eigenvector

corresponding to the eigenvalue w?.



Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the
value of one of the components and compute the values of all the
other N — 1 components using the N — 1 linearly indipendent

equations.
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Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the
value of one of the components and compute the values of all the
other N — 1 components using the N — 1 linearly indipendent
equations.

It is common to impose to each eigenvector a normalisation with
respect to the mass matrix, so that

YiMp; = 1.
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Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the
value of one of the components and compute the values of all the
other N — 1 components using the N — 1 linearly indipendent
equations.

It is common to impose to each eigenvector a normalisation with
respect to the mass matrix, so that

YiMp; = 1.

Please consider that, substituting different eigenvalues in the
equation of free vibrations, you have different linear systems,
leading to different eigenvectors.
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Initial Conditions

The most general expression (the general integral) for the
displacement of a homogeneous system is

N
X(t) = ) Pi(Aisinwit + Bi cos wit).

i=1

In the general integral there are 2N unknown constants of
integration, that must be determined in terms of the initial
conditions.
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Initial Conditions

Usually the initial conditions are expressed in terms of initial displacements
and initial velocities xg and Xxg, so we start deriving the expression of
displacement with respect to time to obtain

N
x(t) = Z Piw;i(Aqcoswit — Bysinwit)
i=1

and evaluating the displacement and velocity for t =0 it is

N N
x(0) = le’iBi = Xo, x(0) = le’iwi/\i = Xp.
i-1

i=1
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Initial Conditions

Usually the initial conditions are expressed in terms of initial displacements
and initial velocities xg and Xxg, so we start deriving the expression of
displacement with respect to time to obtain

N
x(t) = Z Piw;i(Aqcoswit — Bysinwit)
i=1

and evaluating the displacement and velocity for t =0 it is
N N
x(0) = Z PiBi = Xo, x(0) = Z PiwiA; = Xo.
i=1 i=1

The above equations are vector equations, each one corresponding to a
system of N equations, so we can compute the 2N constants of
integration solving the 2N equations

N N
> iiBi =xoj, D biwiAi =%,  j=1,...,N.
o1

i=1
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Take into consideration two distinct eigenvalues, w% and wg, and
write the characteristic equation for each eigenvalue:

2 The
K¥, = w2M P, i —
5 Equation of
Motion
K = w;Mpg Tremelen cnd
Eigenvectors
Eigenvectors are
Orthogonal

premultiply each equation member by the transpose of the other
eigenvector

YK, = wipI M,
YK = wip Mg



Orthogonality - 2

The term P! K1, is a scalar, hence
-
;rKll)r = ( IKII)T) = IKTIIJS
but K is symmetrical, KT = K and we have
YIKp, =PI K.
By a similar derivation

YIM P, =pI M.
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Orthogonality - 3

Substituting our last identities in the previous equations, we have

B Kps = wih; Mg
Y Kps = wip Mg

subtracting member by member we find that

(w2 — W) Y, M =0
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Substituting our last identities in the previous equations, we have

1I)IKll)s = (U%ll);erl)s
PYIKPs = 02 PpI M, —

Equation of
Motion

subtracting member by member we find that Ersemvatiore ™

Eigenvectors are
Orthogonal

(w2 — W) Y, M =0

We started with the hypothesis that w2 # w?, so for every T # s we
have that the corresponding eigenvectors are orthogonal with respect
to the mass matrix

1|)IM11)S =0, for r #£s.



Orthogonality - 4

The eigenvectors are orthogonal also with respect to the stiffness

matrix:

YK, = wip M, =0,

for r #s.
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Orthogonality - 4

The eigenvectors are orthogonal also with respect to the stiffness
matrix:

PIKYP, = 2P M, =0, forr#s.

By definition
Mi = h{Mp;

and consequently
PYIKYP; = wiM;.
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Orthogonality - 4

The eigenvectors are orthogonal also with respect to the stiffness
matrix:

PIKYP, = 2P M, =0, forr#s.
By definition
Mi = h{Mp;
and consequently
YKy = wiM;.

M is the modal mass associated with mode no. 1 while K; = w%Mi
is the respective modal stiffness.
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Eigenvectors are a base

The eigenvectors are linearly independent, so for every vector x we

can write
N
x=) bjg;.
=1

The coefficients are readily given by premultiplication of x by 1l)iTM,
because

N
YIMx =) PpIMjg; =pI Mg = Migs
=1

in virtue of the ortogonality of the eigenvectors with respect to the
mass matrix, and the above relationship gives

tl)jTMx
4=
1TV

Generalized
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Eigenvectors are a base Generalized

SDOF's
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Generalising our results for the displacement vector to the
acceleration vector and expliciting the time dependency, it is

N N
xX(t) =) jqj(t), (1) =) (1), eneectors are o
j:1 j:l ansl\ell in Modal
N N I(:i);:ihzit:jitions
xi(t) = Zwijqj(t)r Xi(t) = Zwijqj(t)-
j=1 j=1

Introducing q(t), the vector of modal coordinates and ¥, the
eigenvector matrix, whose columns are the eigenvectors, we can write

x(t) =¥q(t), x(t) =¥q(t).



EoM in Modal Coordinates...

Substituting the last two equations in the equation of motion,
MY q+KW¥q=p(t)
premultiplying by W7
YIMYG+Y KYq=Yp(t)

introducing the so called starred matrices, with p*(t) = ll’Tp(t), we
can finally write

M* q +K*q =p*(t)
The vector equation above corresponds to the set of scalar equations

pr=> mid;+ > ke  i=1...,N.

Generalized
SDOF's

Giacomo Boffi

Eigenvectors are a
ase

EoM in Modal

Coordinates
Initial Conditions



Generalized

are N independent equations! cneralize

Giacomo Boffi
We must examine the structure of the starred symbols.
The generic element, with indexes 1 and j, of the starred matrices
can be expressed in terms of single eigenvectors,

m}; = Ph{ M; = yM,
k{). = 1|)1TK P = (Uizéij M;. EoM in Modal

Coordinates
Initial Conditions

Eigenvectors are a

where b5 is the Kroneker symbol,

o 1 i=j
6”_{0 1]



Generalized

. are N independent equations! cneralize
Giacomo Boffi

We must examine the structure of the starred symbols.
The generic element, with indexes 1 and j, of the starred matrices
can be expressed in terms of single eigenvectors,

¥ — T 1 e .. .
my; =P M = 5yMy,

* — T . _ 24, i EL%:nvectors are a
kij B ll)i Kll)] o wiél) Ml' EoM in Modal

Coordinates
Initial Conditions

where b5 is the Kroneker symbol,

o 1 i=j
% = {o i#]
Substituting in the equation of motion, with p} = 1|)iTp(t) we have

a set of uncoupled equations

Midi + w?Miq; = pi(t), i=1,...,N



Initial Conditions Revisited

The initial displacements can be written in modal coordinates,
xo =¥ qo

and premultiplying both members by ¥TM we have the following
relationship:
YT TMxo=¥Y"MVYqo = M*qp.

Premultiplying by the inverse of M* and taking into account that
M* is diagonal,

P Mxg

_ *\—LlqyT N
qo=(M*) "W Mxo = dio M,

and, analogously,
i Mxo

dio = M,

Generalized
SDOF's

Giacomo Boffi

Eigenvectors are a
ase

EoM in Modal

Coordinates

Initial Conditions



2 DOF System Sorsatied
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(@] (@] (@] (@]
L —— L ——
X1 X2 2 DOF System
ki =k, ky=2k; m; =2m, My =Tm,;

p(t) = posin wt.

—M _J0 in
x—{xz},p(t)—{po}s wt,

2 0 3 =2
monf2 ki 2]



Equation of frequencies

The equation of frequencies is

k- wm |

3k — 2w?m
-2k

Generalized
SDOF's

Giacomo Boffi

—2k
2k — w?m

2 DOF System



Equation of frequencies el
Giacomo Boffi

The equation of frequencies is

2 _
1K - w?M| = H3k—2w m 2k H

—2k 2k — w?m

Developing the determinant

2 DOF System

(2m?)w?* — (Tmk)w? + (2k*)w® =0



Equation of frequencies el
Giacomo Boffi

The equation of frequencies is

2

—2k 2k — w?m

Developing the determinant

2 DOF System

(2m?)w?* — (Tmk)w? + (2k*)w® =0

Solving the algebraic equation in w?
> k7—+33 s kT7++v33
wj;=——"-— w;=—————
m 4 m 4

k k
w? =0.31386— w3 =3.18614—
m m



Eigenvectors o

Giacomo Boffi

Substituting w? for w? in the first of the characteristic equations
gives the ratio between the components of the first eigenvector,

k(3 —2x0.31386)P11 — 2kipp; =0
while substituting w3 gives

2 DOF System

k (3 —2 X 318614)1b12 — 2kll)22 =0.



Eigenvectors i

Giacomo Boffi

Substituting w? for w? in the first of the characteristic equations
gives the ratio between the components of the first eigenvector,

k(3 —2x0.31386)P11 — 2kipp; =0
while substituting w3 gives 2 DOF System

k (3 —2 X 318614)1b12 — 2kll)22 =0.

Solving with the arbitrary assignment {21 = P2 = 1 gives the

unnormalized eigenvectors,

oy = 10.84307 s = ~0.59307
1= 1 41.00000( " ¥~ 1+1.00000 ("



o o Generalized
Normalization SDOF's
Giacomo Boffi

We compute first M; and M,,

M; =P Mp;
2m 0] [0.84307
={0.84307, 1} { 0 m} { 1 }
= {1.68614m, m} {0'8‘;307} =2.42153m

2 DOF System

M, =1.70346m

the adimensional normalisation factors are
o1 = V2.42153, oy = V1.70346.

Applying the normalisation factors to the respective unnormalised eigenvectors
and collecting them in a matrix, we have the matrix of normalized eigenvectors

_|+0.54177 —0.45440

Y= +0.64262 +0.76618



Modal Loadings Genertzs

Giacomo Boffi

The modal loading is

pr(t) =¥ p(t)

_ . [+oss177 +o64262] fO)
=Po | 045440 +0.76618| |1

2 DOF System

L [06a060)
= P0\ +0.76618



MOdal EOM Generalized

SDOF's

Giacomo Boffi

Substituting its modal expansion for x into the equation of motion
and premultiplying by ¥T we have the uncoupled modal equation of

motion
{mdl +0.31386k q; = +0.64262 po sin wt

md, + 3.18614k q» = +0.76618 pg sin wt

2 DOF System

Note that all the terms are dimensionally correct. Dividing by m
both equations, we have

G1 + w2qy = +0.64262 1 sin wt

Go + w3 = +0.76618 p— sin wt



Particular Integral

We set

E,l = C1 sin wt,

é = —w?C; sin wt

and substitute in the first modal EoM:

C1 (w] — w?)sinwt =

solving for C;

C1:

with w? = K;/m = m=K;/w?:

* 2 1
=P W1 Am_

Ki w? — w?

of course

2 _P2 _ 2404

*
L sinwt

Pl

Kz

and ﬁ2:7

Generalized
SDOF's

Giacomo Boffi

2 DOF System



Integrals

The integrals, for our loading, are thus

i sin wt

q1(t) = Aqsinw;t + By cos wyt + A T
t

q2(t) = Ay sin wat + By cos wat + AL imu,[;
P2

for a system initially at rest

qi(t) = AY o (sinwt — Bysinw;t)

= T
1 . .
q2(t) = Ag) - (sin wt — Basin wot)

we are interested in structural degrees of freedom, too... disregarding transient

AY AP\ 1.10926  0.109271 _
x1(t) = <11)11 B2-0-1|)12 7}55 smwt:(liﬁi o >@smwt

AV A2\ 1.31575  0.184245) py .
x2(t) = <11’21 B2+1I)22 —t[5§ Smwt:(l—ﬁ% + ey )?smwt

Generalized
SDOF's

Giacomo Boffi

2 DOF System



The response in modal coordinates

To have a feeling of the response in modal coordinates, let’s say that the

frequency of the load is w = 2wy, hence 1 = % = 6.37226 and

— 2.0 —

2.5
2
1.5
1
0.5
0
-0.5
-1
-1.5
-2

Qi/Ast

0 5 10 15 20 25 30

oa=wet

In the graph above, the responses are plotted against an adimensional time
coordinate o« with o« = wot, while the ordinates are adimensionalised with

respect to Ay = ¢

Generalized
SDOF's

Giacomo Boffi

2 DOF System



The response in structural coordinates el

Giacomo Boffi
Using the same normalisation factors, here are the response functions in

terms of x; = 1191 +P12qg2 and x2 = Po1q1 + P qo:

2.5 T T
2 - X1 (a)/Ast

2 DOF System
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