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Eigenvector Expansion

For a N-DOF system, it is possible and often advantageous to
represent the displacements x in terms of a linear combination of the
free vibration modal shapes, the eigenvectors, by the means of a set
of modal coordinates,

x =
∑
ψiqi = Ψq.

The eigenvectors play a role analogous to the role played by
trigonometric functions in Fourier Analysis,

I they possess orthogonality properties,
I we will see that it is usually possible to approximate the

response using only a few low frequency terms.
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Inverting Eigenvector Expansion

The columns of the eigenmatrix Ψ are the N linearly indipendent
eigenvectors ψi, hence the eigenmatrix is non-singular and it is
always correct to write q = Ψ−1x.
However, it is not necessary to invert the eigenmatrix...
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Inverting Eigenvector Expansion

The modal expansion is

x =
∑
ψiqi = Ψq;

multiply each member by ΨTM, taking into account that
M? = ΨTMΨ:

ΨTMx = ΨTMΨq ⇒ ΨTMx =M?q

butM? is a diagonal matrix, hence (M?)−1 = {δij/Mi} and we can
write

q =M?−1ΨTMx, or qi =
ψTMx

Mi
.

Note: this formula works also when we don’t know all the eigenvectors and the
inversion of a partial, rectangular Ψ is not feasible.
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Undamped System

Substituting the modal expansion x = Ψq into the equation of
motion, Mẍ+Kx = p(t),

MΨq̈+KΨq = p(t).

Premultiplying each term by ΨT and using the orthogonality of the
eigenvectors with respect to the structural matrices, for each modal
DOF we have an indipendent equation of dynamic equilibrium,

Mi q̈i +ω
2
iMiqi = p

?
i (t), i = 1, . . . ,N.

The equations of motion written in terms of nodal coordinates constitute a
system of N interdipendent, coupled differential equations, written in terms of
modal coordinates constitute a set of N indipendent, uncoupled differential
equations.
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Damped System
For a damped system, the equation of motion is

Mẍ+C ẋ+Kx = p(t)

and in modal coordinates

Mi q̈i +ψ
TCΨq̇+ω2

iMiqi = p
?
i (t).

With ψTi Cψj = cij the i-th equation of dynamic equilibrium is

Mi q̈i +
∑

j

cij q̇j +ω
2
iMiqi = p

?
i (t), i = 1, . . . ,N;

The equations of motion in modal coordinates are uncoupled only if cij = δijCi.
If we define the damping matrix as

C =
∑

b

cbM
(
M−1K

)b
,

we know that, as required,

cij = δijCi with Ci (= 2ζiMiωi) =
∑

b

cb
(
ω2
i

)b
.
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Damped Systems, a Comment

If the response is computed by modal superposition, it is usually
preferred a simpler but equivalent procedure: for each mode of
interest the analyst imposes a given damping ratio and the
integration of the modal equation of equilibrium is carried out as
usual.
The
∑

cb . . . procedure is useful when, e.g. for non-linear problems,
the integration of the eq. of motion is carried out in nodal
coordinates, because it is easier to specify damping properties
globally as elastic modes properties (that can be measured or
deduced from similar outsets) than to assign correct damping
properties at the FE level and assembling C by the FEM.

Truncated Sums,
Matrix Iteration

Giacomo Boffi

Eigenvector
Expansion

Uncoupled
Equations of
Motion
Undamped
Damped System
Initial Conditions

Truncated Sum

Initial Conditions

For a damped system, the modal response can be evaluated, for rest
initial conditions, using the Duhamel integral,

qi(t) =
1

Miωi

∫t

0
pi(τ)e

−ζiωi(t−τ) sinωDi(t− τ) dτ

For different initial conditions x0, ẋ0, we can easily have the initial
conditions in modal coordinates:

q0 =M
?−1ΨTMx0

q̇0 =M
?−1ΨTMẋ0

and the total modal response can be obtained by superposition of
Duhamel integral and free vibrations,

qi(t) = e
−ζiωit(qi,0 cosωDit+

q̇i,0 + qi,0ζiωi
ωDi

sinωDit) + · · ·
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Having computed all the N modal responses, qi(t), the response in
terms of nodal coordinates is the sum of all the N eigenvectors, each
multiplied by the corresponding modal response:

x(t) =

N∑

i=1

ψiqi(t)

= ψ1q1(t) +ψ2q2(t) + · · ·+ψNqN(t)



Eigenvector Expansion

Uncoupled Equations of Motion

Truncated Sum
Definition
Elastic Forces
Example

Truncated Sums,
Matrix Iteration

Giacomo Boffi

Eigenvector
Expansion

Uncoupled
Equations of
Motion

Truncated Sum
Definition
Elastic Forces
Example

Truncated sum

A truncated sum uses only M < N of the lower frequency modes

x(t) ≈∑M<Ni=1 ψiqi(t),

and, under wide assumptions, gives you a good approximation of the
structural response.

The importance of truncated sum approximation is twofold:
I less computational effort: less eigenpairs to calculate, less equation of

motion to integrate etc
I in FEM models the higher modes are rough approximations to structural

ones (mostly due to uncertainties in mass distribution details) and the
truncated sum excludes potentially spurious contributions from the
response.
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Elastic Forces

Until now, we showed interest in displacements only, but we are
interested in elastic forces too. We know that elastic forces can be
expressed in terms of displacements and the stiffness matrix:

fS(t) = Kx(t) = Kψ1q1(t) +Kψ2q2(t) + · · · .

From the characteristic equation we know that

Kψi = ω
2
iMψi

substituting in the previous equation

fS(t) = ω
2
1Mψ1q1(t) +ω

2
2Mψ2q2(t) + · · · .



Truncated Sums,
Matrix Iteration

Giacomo Boffi

Eigenvector
Expansion

Uncoupled
Equations of
Motion

Truncated Sum
Definition
Elastic Forces
Example

Elastic Forces, 2

The high frequency modes contribution to the elastic forces, e.g.

fS(t) = ω
2
1Mψ1q1(t) + · · ·+ω2

20Mψ20q20(t) + · · · ,

when compared to low frequency mode contributions are more
important than their contributions to displacement, because of the
multiplicative term ω2

i .
From this fact follows that, to estimate internal forces within a given
accuracy a greater number of modes must be considered in a
truncated sum than the number required to estimate displacements
within the same accuracy.
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Example: problem statement

k1 = 120MN/m, m1 = 200 t,

k2 = 240MN/m, m2 = 300 t,

k3 = 360MN/m, m3 = 400 t.
k2

k1

k3

m1

m2

m3

x3

x2

x1

1. The above structure is subjected to these initial conditions,

xT0 =
{

5mm 4mm 3mm
}

,

ẋT0 =
{

0 9mm/s 0
}

.

Write the equation of motion using modal superposition.
2. The above structure is subjected to a half-sine impulse,

pT (t) =
{

1 2 2
}

2.5MN sin
π t

t1
, with t1 = 0.02 s.

Write the equation of motion using modal superposition.
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Example: structural matrices

k2

k1

k3

m1

m2

m3

x3

x2

x1

k1 = 120MN/m, m1 = 200 t,

k2 = 240MN/m, m2 = 300 t,

k3 = 360MN/m, m3 = 400 t.

The structural matrices can be written

K = k




1 −1 0
−1 3 −2
0 −2 5


 = kK, with k = 120

MN
m

,

M = m




2 0 0
0 3 0
0 0 4


 = mM, with m = 100000kg.
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Example: adimensional eigenvalues

We want the solutions of the characteristic equation, so we start
writing that the determinant of the equation must be zero:

∥∥∥K− ω2

k/mM
∥∥∥ =

∥∥K−Ω2M
∥∥ = 0,

with ω2 = 1200
( rad

s

)2
Ω2.

Expanding the determinant
∥∥∥∥∥∥

1− 2Ω2 −1 0
−1 3− 3Ω2 −2
0 −2 5− 4Ω2

∥∥∥∥∥∥
= 0

we have the following algebraic equation of 3rd order in Ω2

24

(
Ω6 −

11

4
Ω4 +

15

8
Ω2 −

1

4

)
= 0.
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Example: table of eigenvalues etc

Here are the adimensional roots Ω2
i , i = 1, 2, 3, the dimensional

eigenvalues ω2
i = 1200 rad

2

s2 Ω
2
i and all the derived dimensional

quantities:

Ω2
1 = 0.17573 Ω2

2 = 0.8033 Ω2
3 = 1.7710

ω2
1 = 210.88 ω2

2 = 963.96 ω2
3 = 2125.2

ω1 = 14.522 ω2 = 31.048 ω3 = 46.099

f1 = 2.3112 f2 = 4.9414 f3 = 7.3370

T1 = 0.43268 T3 = 0.20237 T3 = 0.1363
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Example: eigenvectors and modal matrices

With ψ1j = 1, using the 2nd and 3rd equations,
[

3 − 3Ω2
j −2

−2 5 − 4Ω2
j

]{
ψ2j

ψ3j

}
=

{
1
0

}

The above equations must be solved for j = 1, 2, 3. The solutions are finally
collected in the eigenmatrix

Ψ =




1 1 1
+0.648535272183 −0.606599092464 −2.54193617967
+0.301849953585 −0.678977475113 +2.43962752148


 .

The Modal Matrices are

M? =




362.6 0 0
0 494.7 0
0 0 4519.1


× 103 kg,

K? =




76.50 0 0
0 477.0 0
0 0 9603.9


× 106 N

m
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Example: initial conditions in modal coordinates

q0 = (M?)−1ΨTM




5
4
3



 mm =




+5.9027
−1.0968
+0.1941



 mm,

q̇0 = (M?)−1ΨTM




0
9
0





mm
s

=




+4.8288
−3.3101
−1.5187





mm
s
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Example: structural response

These are the displacements, in mm

x1 = +5.91 cos(14.5t+ .06) + 1.10 cos(31.0t− 3.04) + 0.20 cos(46.1t− 0.17)

x2 = +3.83 cos(14.5t+ .06) − 0.67 cos(31.0t− 3.04) − 0.50 cos(46.1t− 0.17)

x3 = +1.78 cos(14.5t+ .06) − 0.75 cos(31.0t− 3.04) + 0.48 cos(46.1t− 0.17)

and these the elastic/inertial forces, in kN

x1 = +249. cos(14.5t+ .06) + 212. cos(31.0t− 3.04) + 084. cos(46.1t− 0.17)

x2 = +243. cos(14.5t+ .06) − 193. cos(31.0t− 3.04) − 319. cos(46.1t− 0.17)

x3 = +151. cos(14.5t+ .06) − 288. cos(31.0t− 3.04) + 408. cos(46.1t− 0.17)

As expected, the contributions of the higher modes are more important for the
forces, less important for the displacements.
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Part II

Matrix Iteration Procedures
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Introduction

Dynamic analysis of MDOF systems based on modal superposition is
both simple and efficient

I simple: the modal response can be easily computed, analitically
or numerically, with the techniques we have seen for SDOF
systems,

I efficient: in most cases, only the modal responses of a few lower
modes are required to accurately describe the structural
response.
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Introduction

The structural matrices being easily assembled using the FEM, the
modal superposition procedure is ready to be applied to structures
with thousands, millions of DOF’s!
But wait, we can know how to compute the eigenpairs only when the
analyzed structure has very few degrees of freedom...
We will discuss how it is possible to compute the eigenpairs of
arbitrarily large dynamic systems using the so called Matrix Iteration
procedure (and a number of variations derived from this fundamental
idea).
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Equilibrium

First, we will see an iterative procedure whose outputs are the first,
or fundamental, mode shape vector and the corresponding
eigenvalue.
When an undamped system freely vibrates with a harmonic time
dependency of frequency ωi, the equation of motion, simplifying the
time dependency, is

Kψi = ω
2
iMψi.

In equilibrium terms, the elastic forces are equal to the inertial forces
when the systems oscillates with frequency ω2

i and mode shape ψi
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Proposal of an iterative procedure

Our iterative procedure will be based on finding a new displacement
vector xn+1 such that the elastic forces fS = Kxi+1 are in
equilibrium with the inertial forces due to the old displacement
vector xn, fI = ω2

iMxn, that is

Kxn+1 = ω
2
iMxn.

Premultiplying by the inverse of K and introducing the Dynamic
Matrix, D = K−1M

xn+1 = ω
2
iK

−1Mxn = ω2
iDxn.

In the generative equation above we miss a fundamental part, the
square of the free vibration frequency ω2

i .
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The Matrix Iteration Procedure, 1

This problem is solved considering the xn as a sequence of
normalized vectors and introducing the idea of an unnormalized new
displacement vector, x̂n+1,

x̂n+1 = Dxn,

note that we removed the explicit dependency on ω2
i .
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The Matrix Iteration Procedure, 2

The normalized vector is obtained applying to x̂n+1 a normalizing
factor, Fn+1,

xn+1 =
x̂n+1

Fn+1
,

but xn+1 = ω
2
iDxn = ω2

i x̂n+1, ⇒ 1

F
= ω2

i

If we agree that, near convergence, xn+1 ≈ xn, substituting in the
previous equation we have

xn+1 ≈ xn = ω2
i x̂n+1 ⇒ ω2

i ≈
xn

x̂n+1
.

Of course the division of two vectors is not an option, so we want to
twist it into something useful.
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Normalization

First, consider xn = ψi: in this case, for j = 1, . . . ,N it is

xn,j/x̂n+1,j = ω
2
i .

When xn 6= ψi it is possible to demonstrate that we can bound the
eigenvalue

min
j=1,...,N

{
xn,j

x̂n+1,j

}
6 ω2

i 6 max
j=1,...,N

{
xn,j

x̂n+1,j

}
.

A more rational approach would make reference to a proper vector
norm, so using our preferred vector norm we can write

ω2
i ≈

x̂Tn+1Mxn

x̂Tn+1Mx̂n+1
,

(if memory helps, this is equivalent to the R11 approximation, that we introduced
studying Rayleigh quotient refinements).
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Proof of Convergence, 1

Until now we postulated that the sequence xn converges to some,
unspecified eigenvector ψi, now we will demonstrate that the
sequence converge to the first, or fundamental mode shape,

lim
n→∞

xn = ψ1.

1. Expand x0 in terms of eigenvectors an modal coordinates:

x0 = ψ1q1,0 +ψ2q2,0 +ψ3q3,0 + · · · .

2. The inertial forces, assuming that the system is vibrating
according to the fundamental frequency, are

fI,n=0 = ω
2
1M (ψ1q1,0 +ψ2q2,0 +ψ3q3,0 + · · · )

=M

(
ω2

1ψ1q1,0
ω2

1

ω2
1

+ω2
2ψ2q2,0

ω2
1

ω2
2

+ · · ·
)
.

Truncated Sums,
Matrix Iteration

Giacomo Boffi

Introduction

Fundamental
Mode Analysis
Idea
Procedure
Convergence

Second Mode
Analysis

Higher Modes

Inverse Iteration

Matrix Iteration
with Shifts

Rayleigh
Methods

Proof of Convergence, 2

3. The deflections due to these forces (no hat!, we have multiplied by ω2
1) are

xn=1 = K
−1M

(
ω2

1ψ1q1,0
ω2

1

ω2
1

+ω2
2ψ2q2,0

ω2
1

ω2
2

+ · · ·
)

,

(note that every term has been multiplied and divided by the corresponding
eigenvalue ω2

i).

4. With ω2
jMψj = Kψj, substituting and simplifying K−1K = I,

xn=1 = K
−1

(
Kψ1q1,0

(
ω2

1

ω2
1

)1

+Kψ2q2,0

(
ω2

1

ω2
2

)1

+Kψ3q3,0

(
ω2

1

ω2
3

)1

+ · · ·
)

= ψ1q1,0
ω2

1

ω2
1

+ψ2q2,0
ω2

1

ω2
2

+ψ3q3,0
ω2

1

ω2
3

+ · · · ,
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Proof of Convergence, 3

5. applying again this procedure

xn=2 =

(
ψ1q1,0

(
ω2

1

ω2
1

)2

+ψ2q2,0

(
ω2

1

ω2
2

)2

+ψ3q3,0

(
ω2

1

ω2
3

)2

+ · · ·
)

,

6. applying the procedure n times

xn =

(
ψ1q1,0

(
ω2

1

ω2
1

)n
+ψ2q2,0

(
ω2

1

ω2
2

)n
+ψ3q3,0

(
ω2

1

ω2
3

)n
+ · · ·

)
.
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Proof of Convergence, 4

Going to the limit,
lim
n→∞

xn = ψ1q1,0

because

lim
n→∞

(
ω2

1

ω2
j

)n
= δ1j

Consequently,

lim
n→∞

|xn|

|x̂n|
= ω2

1
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Purified Vectors

If we know ψ1 and ω2
1 from the matrix iteration procedure it is

possible to compute the second eigenpair, following a slightly
different procedure.
Express the initial iterate in terms of the (unknown) eigenvectors,

xn=0 = Ψqn=0

and premultiply by the (known) ψT1M:

ψT1Mxn=0 =M1q1,n=0

solving for q1,n=0

q1,n=0 =
ψT1Mxn=0

M1
.

Knowing the amplitude of the 1st modal contribution to xn=0 we
can write a purified vector,

yn=0 = xn=0 −ψ1q1,n=0.
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Convergence (?)

It is easy to demonstrate that using yn=0 as our starting vector

lim
n→∞

yn = ψ2q2,n=0, lim
n→∞

|yn|

|ŷn|
= ω2

2.

because the initial amplitude of the first mode is null.

Due to numerical errors in the determination of fundamental
mode and in the procedure itself, using a plain matrix iteration
the procedure however converges to the 1st eigenvector, so to
preserve convergence to the 2nd mode it is necessary that the
iterated vector yn is purified at each step n.
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Purification Procedure

The purification procedure is simple, at each step the amplitude of
the 1st mode is first computed, then removed from the iterated
vector yn

q1,n = ψT1Myn/M1,

ŷn+1 = D (yn −ψ1q1,n) = D

(
I−

1

M1
ψ1ψ

T
1M

)
yn

Introducing the sweeping matrix S1 = I− 1
M1
ψ1ψ

T
1M and the

modified dynamic matrix D2 = DS1, we can write

ŷn+1 = DS1yn = D2yn.

This is known as matrix iteration with sweeps.
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Third Mode

Using again the idea of purifying the iterated vector, starting with the knowledge
of the first and the second eigenpair,

ŷn+1 = D (yn −ψ1q1,n −ψ2q2,n)

with qn,1 as before and
q2,n = ψT2Myn/M2,

substituting in the expression for the purified vector

ŷn+1 = D
(
I−

1

M1
ψ1ψ

T
1M

︸ ︷︷ ︸
S1

−
1

M2
ψ2ψ

T
2M

)

The conclusion is that the sweeping matrix and the modified dynamic matrix to
be used to compute the 3rd eigenvector are

S2 = S1 −
1

M2
ψ2ψ

T
2M, D3 = DS2.
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Generalization to Higher Modes

The results obtained for the third mode are easily generalised.
It is easy to verify that the following procedure can be used to compute all the
modes.

Define S0 = I, take i = 1,

1. compute the modified dynamic matrix to be used for mode i,

Di = DSi−i

2. compute ψi using the modified dynamic matrix;

3. compute the modal mass Mi = ψ
TMψ;

4. compute the sweeping matrix Si that sweeps the contributions of the first i
modes from trial vectors,

Si = Si−1 −
1

Mi

ψiψ
T
iM;

5. increment i, GOTO 1.

Well, we finally have a method that can be used to compute all the eigenpairs of
our dynamic problems, full circle!
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Discussion

The method of matrix iteration with sweeping is not used in
production because
1. D is a full matrix, even if M and K are banded matrices, and

the matrix product that is the essential step in every iteration is
computationally onerous,

2. the procedure is however affected by numerical errors,
so, after having demonstrated that it is possible to compute all the
eigenvectors of a large problem using an iterative procedure it is time
to look for different, more efficient iterative procedures.
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Introduction to Inverse Iteration

Inverse iteration is based on the fact that the symmetric stiffness
matrix has a banded structure, that is a relatively large triangular
portion of the matrix is composed by zeroes.

The banded structure is due to the FEM model: in every
equation of equilibrium the only non zero elastic force
coefficients are due to the degrees of freedom of the few
FE’s that contain the degree of freedom for which the
equilibrium is written.
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Definition of LU decomposition

Every symmetric, banded matrix can be subjected to a so called LU
decomposition, that is, for K we write

K = LU

where L and U are, respectively, a lower- and an upper-banded
matrix.
If we denote with b the bandwidth of K, we have

L =
[
lij
]

with lij ≡ 0 for

{
i < j

j < i− b

and

U =
[
uij
]

with uij ≡ 0 for

{
i > j

j > i+ b



Truncated Sums,
Matrix Iteration

Giacomo Boffi

Introduction

Fundamental
Mode Analysis

Second Mode
Analysis

Higher Modes

Inverse Iteration
LU Decomposition
Back Substitution

Matrix Iteration
with Shifts

Rayleigh
Methods

Twice the equations?

In this case, with wn =Mxn, the recursion can be written

LUxn+1 = wn

or as a system of equations,

Uxn+1 = zn+1

Lzn+1 = wn

Apparently, we have doubled the number of unknowns, but the zj’s
can be easily computed by the procedure of back substitution.
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Back Substitution

Temporarily dropping the n and n+ 1 subscripts, we can write

z1 = (w1)/l11

z2 = (w2 − l21z1)/l22

z3 = (w3 − l31z1 − l32z2)/l33

· · ·

zi = (wi −

i−1∑

j=i−b

lijzj)/lii

· · ·

The x are then given by Ux = z.
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Back Substitution

We have computed z by back substitution, we must solve Ux = z
but U is upper triangular, so we have

xN = (zN)/uNN

xN−1 = (zN−1 − uN−1,NzN)/uN−1,N−1

xN−2 = (zN−2 − uN−2,NzN − uN−2,N−1zN−1)/uN−2,N−2

· · ·

xN−j = (zN−j −

j−1∑

k=0

uN−j,N−kzN−k)/uN−j,N−j,

For moderately large systems, the reduction in operations count
given by back substitution with respect to matrix multiplication is so
large that the additional cost of the LU decomposition is negligible.
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Introduction to Shifts

Inverse iteration can be applied to each step of matrix iteration with
sweeps, or to each step of a different procedure intended to compute
all the eigenpairs, the matrix iteration with shifts.
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Matrix Iteration with Shifts, 1

If we write
ω2
i = µ+ λi,

where µ is a shift and λi is a shifted eigenvalue, the eigenvalue problem
can be formulated as

Kψi = (µ+ λi)Mψi

or
(K− µM)ψi = λiMψi.

If we introduce a modified stiffness matrix

K = K− µM,

we recognize that we have a new problem, that has exactly the same
eigenvectors and shifted eigenvalues,

Kφi = λiMφi,

where
φi = ψi, λi = ω

2
i − µ.
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Matrix Iteration with Shifts, 2

The shifted eigenproblem can be solved, e.g., by matrix iteration and the
procedure will converge to the smallest absolute value shifted eigenvalue and to
the associated eigenvector. After convergence is reached,

ψi = φi, ω2
i = λi + µ.

The convergence of the method can be greatly enhanced if the shift µ is updated
every few steps during the iterative procedure using the current best estimate of
λi,

λi,n+1 =
x̂n+1Mxn

x̂n+1Mx̂n+1
,

to improve the modified stiffness matrix to be used in the following iterations,

K = K− λi,n+1M

Much thought was spent on the problem of choosing the initial shifts, so that all
the eigenvectors can be computed in sequence without missing any of them.
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Rayleigh Quotient for Discrete Systems

The matrix iteration procedures are usually used in conjunction with methods
derived from the Rayleigh Quotient method.
The Rayleigh Quotient method was introduced using distributed flexibilty
systems and an assumed shape function, but we have seen also an example
where the Rayleigh Quotient was computed for a discrete system using an
assumed shape vector.
The procedure to be used for discrete systems can be summarized as

x(t) = φZ0 sinωt, ẋ(t) = ωφZ0 cosωt,

2Tmax = ω
2φTMφ, 2Vmax = φ

TKφ,

equating the maxima, we have

ω2 =
φTKφ

φTMφ
=
k?

m?
,

where φ is an assumed shape vector, not an eigenvector.
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Ritz Coordinates

For a N DOF system, an approximation to a displacement vector x
can be written in terms of a set of M < N assumed shape, linearly
independent vectors,

φi, i = 1, . . . ,M < N

and a set of Ritz coordinates zi, i− 1, . . . ,M < N:

x =
∑

i

φizi =Φz.

We say approximation because a linear combination of M < N

vectors cannot describe every point in a N-space.
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Rayleigh Quotient in Ritz Coordinates

We can write the Rayleigh quotient as a function of the Ritz
coordinates,

ω2(z) =
zTΦTKΦz

zTφTMφz
=
k(z)

m(z)
,

but this is not an explicit function for any modal frequency...

On the other hand, we have seen that frequency estimates are always
greater than true frequencies, so our best estimates are the the local
minima of ω2(z), or the points where all the derivatives of ω2(z)
with respect to zi are zero:

∂ω2(z)

∂zj
=
m(z)

∂k(z)

∂zi
− k(z)

∂m(z)

∂zi
(m(z))2

= 0, for i = 1, . . . ,M < N
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Rayleigh Quotient in Ritz Coordinates

Observing that
k(z) = ω2(z)m(z)

we can substitute into and simplify the preceding equation,

∂k(z)

∂zi
−ω2(z)

∂m(z)

∂zi
= 0, for i = 1, . . . ,M < N
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Rayleigh Quotient in Ritz Coordinates

With the positions

ΦTKΦ = K and ΦTMΦ =M

we have
k(z) = zTKz =

∑

r

∑

s

krszrzs,

hence

{
∂k(z)

∂zi

}
=

{∑

s

kiszs +
∑

r

krizr

}
.

Due to symmetry, kri = kir and consequently

{
∂k(z)

∂zi

}
=

{
2
∑

s

kiszs

}
= 2Kz.

Analogously {
∂m(z)

∂zi

}
= 2Mz.
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Reduced Eigenproblem

Substituting these results in ∂k(z)∂zi
−ω2(z)

∂m(z)
∂zi

= 0 we can write
a new eigenvector problem, in the M DOF Ritz coordinates space,
with reduced M×M matrices:

Kz−ω2Mz = 0.
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Modal Superposition?

After solving the reduced eigenproblem, we have a set of M
eigenvalues ω2

i and a corresponding set of M eigenvectors zi. What
is the relation between these results and the eigenpairs of the original
problem?
The ω2

i clearly are approximations from above to the real
eigenvalues, and if we write ψi =Φzi we see that, being

ψ
T
iMψj = z

T
i Φ

TMΦ︸ ︷︷ ︸
M

zj =Miδij,

the approximated eigenvectors ψi are orthogonal with respect to the
structural matrices and can be used in ordinary modal superposition
techniques.



Truncated Sums,
Matrix Iteration

Giacomo Boffi

Introduction

Fundamental
Mode Analysis

Second Mode
Analysis

Higher Modes

Inverse Iteration

Matrix Iteration
with Shifts

Rayleigh
Methods
Rayleigh-Ritz
Method
Rayleigh-Ritz
Example
Subspace iteration

A Last Question

One last question: how many ω2
i and ψi are effective

approximations to the true eigenpairs? Experience tells that an
effective approximation is to be expected for the first M/2
eigenthings.

RR Example

m

m

m

m

k

k

k

k

m

k

x5

x4

x3

x2

x1

The structural matrices

K = k




+2 −1 0 0 0
−1 +2 −1 0 0
0 −1 +2 −1 0
0 0 −1 +2 −1
0 0 0 −1 +1



M = m




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




The Ritz base vectors and the reduced matrices,

Φ =




0.2 −0.5
0.4 −1.0
0.6 −0.5
0.8 +0.0
1.0 1.0




K̄ = k

[
0.2 0.2
0.2 2.0

]

M̄ = m

[
2.2 0.2
0.2 2.5

]

Red. eigenproblem (ρ = ω2m/k):
[

2 − 22ρ 2 − 2ρ
2 − 2ρ 20 − 25ρ

]{
z1
z2

}
=

{
0
0

}

The roots are ρ1 = 0.0824, ρ2 = 0.800, the frequencies are
ω1 = 0.287

√
k/m [ = 0.285], ω2 = 0.850

√
k/m [ = 0.831], while the k/m

normalized exact eigenvalues are [0.08101405, 0.69027853].
The first eigenvalue is estimated with good approximation.

Truncated Sums,
Matrix Iteration

Giacomo Boffi

Introduction

Fundamental
Mode Analysis

Second Mode
Analysis

Higher Modes

Inverse Iteration

Matrix Iteration
with Shifts

Rayleigh
Methods
Rayleigh-Ritz
Method
Rayleigh-Ritz
Example
Subspace iteration

Rayleigh-Ritz Example

The Ritz coordinates eigenvector matrix is Z =

[
1.329 0.03170

−0.1360 1.240

]
.

The RR eigenvector matrix, Φ and the exact one, Ψ:

Φ =




+0.3338 −0.6135
+0.6676 −1.2270
+0.8654 −0.6008
+1.0632 +0.0254
+1.1932 +1.2713




, Ψ =




+0.3338 −0.8398
+0.6405 −1.0999
+0.8954 −0.6008
+1.0779 +0.3131
+1.1932 +1.0108




.

The accuracy of the estimates for the 1st mode is very good, on the contrary the
2nd mode estimates are in the order of a few percents.

It may be interesting to use Φ̂ = K−1MΦ as a new Ritz base to get a new
estimate of the Ritz and of the structural eigenpairs.
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Introduction to Subspace Iteration

Rayleigh-Ritz gives good estimates for p ≈M/2 modes, due also to
the arbitrariness in the choice of the Ritz reduced base Φ.
Having to solve a M = 2p order problem to find p eigenvalues is
very costly, as the operation count is ∝ O(M3).
Choosing better Ritz base vectors, we can use less vectors and solve
a smaller (much smaller in terms of operations count) eigenvalue
problem.
If one thinks of it, with a M = 1 base we can always compute,
within arbitrary accuracy, one eigenvector using the Matrix Iteration
procedure, isn’t it?
And the trick is to change the base at every iteration...
The Subspace Iteration procedure is a variant of the Matrix Iteration
procedure, where we apply the same idea, to use the response to
inertial loading in the next step, not to a single vector but to a set of
different vectors at once.

Truncated Sums,
Matrix Iteration

Giacomo Boffi

Introduction

Fundamental
Mode Analysis

Second Mode
Analysis

Higher Modes

Inverse Iteration

Matrix Iteration
with Shifts

Rayleigh
Methods
Rayleigh-Ritz
Method
Rayleigh-Ritz
Example
Subspace iteration

Statement of the procedure

The first M eigenvalue equations can be written in matrix algebra, in
terms of an N×M matrix of eigenvectors Φ and an M×M
diagonal matrix Λ that collects the eigenvalues

K
N×N

Φ
N×M

= M
N×N

Φ
N×M

Λ
M×M

Using again the hat notation for the unnormalized iterate, from the
previous equation we can write

KΦ̂1 =MΦ0

where Φ0 is the matrix, N×M, of the zero order trial vectors, and
Φ̂1 is the matrix of the non-normalized first order trial vectors.
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Orthonormalization

To proceed with iterations,
1. the trial vectors in Φ̂n+1 must be orthogonalized, so that each

trial vector converges to a different eigenvector instead of
collapsing to the first eigenvector,

2. all the trial vectors must be normalized, so that the ratio
between the normalized vectors and the unnormalized iterated
vectors converges to the corresponding eigenvalue.

These operations can be performed in different ways (e.g.,
ortho-normalization by Gram-Schmidt process).
Another possibility to do both tasks at once is to solve a
Rayleigh-Ritz eigenvalue problem, defined in the Ritz base
constituted by the vectors in Φ̂n+1.
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Associated Eigenvalue Problem

Developing the procedure for n = 0, with the generalized matrices

K?
1 = Φ̂1

TKΦ̂1

and
M?

1 = Φ̂1
TMΦ̂1

the Rayleigh-Ritz eigenvalue problem associated with the orthonormalisation of
Φ̂1 is

K?
1Ẑ1 =M

?
1Ẑ1Ω

2
1.

After solving for the Ritz coordinates mode shapes, Ẑ1 and the frequencies Ω2
1,

using any suitable procedure, it is usually convenient to normalize the shapes, so
that Ẑ1

TM?
1Ẑ1 = I. The ortho-normalized set of trial vectors at the end of the

iteration is then written as
Φ1 = Φ̂1Ẑ1.

The entire process can be repeated for n = 1, then n = 2, n = . . . until the
eigenvalues converge within a prescribed tolerance.
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Convergence

In principle, the procedure will converge to all the M lower
eigenvalues and eigenvectors of the structural problem, but it was
found that the subspace iteration method converges faster to the
lower p eigenpairs, those required for dynamic analysis, if there is
some additional trial vector; on the other hand, too many additional
trial vectors slow down the computation without ulterior benefits.
Experience has shown that the optimal total number M of trial
vectors is the minimum of 2p and p+ 8.
The subspace iteration method makes it possible to compute
simultaneosly a set of eigenpairs within any required level of
approximation, and is the preferred method to compute the
eigenpairs of a complex dynamic system.


