
Written Test, July 7th 2017

Dynamics of Structures 2016-2017

1 Estimation of Structural Parameters

A single storey structure is tested to determine its characteristics.

• First, the structure is statically loaded with an hydraulic jack until the
storey displacement is equal to 2 mm; the applied force is equal to 320 kN.

• Next, the static force is instantaneously released and the displacement is
recorded at a sampling rate of 250 samples per second — the measurements
are collected in a vector x =

{
xi
}

, i = 0, 1, 2, . . ., where xi = x(ti) and
ti = i/250.

It is apparent that x0 = 2.0 mm is a maximum, because ẋ0 ≡ 0 — but due
to sampling effects we don’t know exactly neither the value nor the location of
successive maxima...

What we can do is to list, in the following table, all the measurements xi
such that xi−1 < xi and xi > xi+1; time is in seconds, displacements (given
with 3 digits of accuracy) are in millimetres.

i ti xi−1 xi xi+1

33 0.132 1.694 1.741 1.726
67 0.268 1.512 1.512 1.460

100 0.400 1.309 1.322 1.288
133 0.532 1.131 1.153 1.134
166 0.664 0.975 1.003 0.996
200 0.800 0.871 0.873 0.843

1. Estimate the damped period of vibration of the system.

2. Estimate the stiffness, the damping ratio and the mass of the system.

Solution

Period of Vibration

From the table we know the position on the time axis of six sampled maxima,
in particular the 6th one occurs at t = 800 ms hence

TD =
800 ms

6
= 133.33 ms
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If we look at the detail of the last maximum, we could recognize that x199 ≈
x200 and consequently a better approximation of the time location of the 6th
maximum is t ≈ 798 ms and a better approximation of the damped period of
vibration is TD = 133.00 ms.

Stiffness

The static displacement is x0 = 2 mm = 0.002 m, the equation of static equilib-
rium is k x0 = P = 320 kN = 320 000 N and solving the equation of equilibrium
with respect to k gives

k =
320× 103

2× 10−3 N m−1 = 160× 106 N m−1.

Damping ratio

The response of a damped SDoF system is the product of a periodic function,
its period TD and a decaying exponential, exp(−ζωnt), hence

x(0)

x(mTD)
=

1

exp(−ζωnmTD)
= exp(ζωnm

2π

ωD
) = exp(

ζ√
1− ζ2

2mπ).

Taking the logarithm of the first and the last term, introducing the logarith-

mic decrement δm = log x(0)
x(mTD) , we have

δm = 2mπ
ζ√

1− ζ2

and solving formally with respect to ζ

ζ =
δm

2mπ

√
1− ζ2.

Using the 6th maximum, x200 = 0.873 mm,

δ6 = log
2.000

0.873
= log 2.29096 = 0.82897

and with m = 6
ζ = 0.021989030064

√
1− ζ2

and we can generate the sequence

ζ0 = 0.000000,

ζ1 = 0.021989,

ζ2 = 0.021983,

ζ3 = 0.021983.

Our estimate for the damping ratio is hence ζ = 21.983 ‰
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Mass

From the equation of frequencies we have mω2
n = k = 160× 106 N m−1 and we

can derive ω2
n from ω2

D =
(

2π
TD

)2
= (1− ζ2)ω2

n.

It is ωD = 47.124 rad s−1, ωn = 47.135 rad s−1 and ω2
n = 2221.735 rad2 s−2

and eventually

m =
160× 106

2221.735
kg = 72 016 kg.

2 Free Vibrations of a 2 DOF System

m

P0

L

L

L

Figure 1: the 2 dof system.

The undamped structure in figure 1 consists of two uniform beams of negligible
mass and supports a body of mass m, hence the dynamic system can be modeled
as a 2 dof system (use x1 for the downward component of the body displacement
and x2 for the rightward cpmponent).

1. Compute the 2 × 2 structural matrices M and K in terms of m, L and
the flexural stiffness EJ , neglecting the axial and shear deformabilities.

An unknown static force P0 is applied to the mass, deforming the structure, and
at time t = 0 the static force is suddenly removed, causing the free vibrations
of the structure.

At a later time, t = π/ω0 (with ω2
0 = 2EJ/7mL3), the displacements are

measured and it is

x

(
π

ω0

)
=

{
−3√
2− 1

}
δ

with

δ =
PL3

EJ
.
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2. Determine the static force p0 initially applied to the system.

Solution

1. Initially we have an unknown static load P0 and consequently the initial
displacements are x0 = FP0 or, conversely, P0 = Kx0.

2. Introducing the unknown initial value of the modal coordinates q0 it is
x0 = Ψq0 and P0 = KΨq0.

3. With the notations xπ = x(π/ω0) and qπ = q(π/ω0) it is qπ = Ψ−1xπ —
note that xπ is a known quantity.

4. Writing ωi = λiω0, because our system starts with q̇0 = 0 the modal
responses are given by the expression

qi(t) = qi,0 cosλiω0t

and substituting t = π/ω0 it is

qi,π = qi,0 cosλiπ

or, in other words,

qπ =

[
cosλ1π 0

0 cosλ2π

]
q0 ⇒ q0 =

[
cosλ1π 0

0 cosλ2π

]−1

Ψ−1xπ.

5. Eventually

P0 = KΨ

[
cosλ1π 0

0 cosλ2π

]−1

Ψ−1xπ.

Structural Matrices

Using the PVD, it’s easy to compute the flexibility matrix,

F =
1

2

L3

EJ

[
4 1
1 2

]
and by inversion

K = F−1 =
2

7

EJ

L3

[
2 −1
−1 4

]
.

The mass matrix is

M = m

[
1 0
0 1

]
.

Equation of Frequencies, Eigenvectors

For free vibrations, x = ψ sinωt and substituting in the equation of motion(
2

7

EJ

L3

[
2 −1
−1 4

]
−mω2

[
1 0
0 1

])
ψ cosωt = 0.
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With ω2
0 = 2EJ/7mL3 and writing ω2 = λ2ω2 the preceding equation can be

simplified, [
2− λ2 −1
−1 4− λ2

]
ψ = 0

that has non trivial solutions when∣∣∣∣2− λ2 −1
−1 4− λ2

∣∣∣∣ = λ4 − 6λ2 + 7 = 0,

that gives us the eigenvalues of our system

λ21,2 = 3∓
√

2.

Substituting in the 2nd of the two equations of free vibrations, it is

ψ1i = (1±
√

2)ψ2i

and collecting the eigenvectors in the eigenvector matrix, with ψ2i = 1

Ψ =

[
1 +
√

2 1−
√

2
1 1

]
and

Ψ−1 =
1

2
√

2

[
+1

√
2− 1

−1
√

2 + 1

]
=

1

4

[
+
√

2 2−
√

2

−
√

2 2 +
√

2

]
2.0.1 Drawing the Conclusion

Substituting the numerical values, we have

λ2 =

{
1.58578644
4.41421356

}
, λ =

{
1.25928013
2.10100299

}
, λπ =

{
3.9561452
6.60049556

}
cosλπ =

{
−0.68619395
0.95007809

}
,

1

cosλπ
=

{
−1.45731392
1.05254506

}
,

Ψ =

[
2.41421356 −0.41421356

1.0 1.0

]
, Ψ−1 =

[
0.35355339 0.14644661
−0.35355339 0.85355339

]
and finally

P0 =
2

7

EJ

L3

[
2 −1
−1 4

] [
2.4142 −0.4142
1.0 1.0

] [
−1.4573 0

0 1.0525

] [
0.3536 0.1464
−0.3536 0.8536

] {
−3

0.4142

}
PL3

EJ

=

{
0.8164
2.5376

}
P.

A numerical mistake in the last passage is, of course, not relevant...
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