
Written Test, July 21st 2017

There are many sub-problems, possibly more than you can manage in 4 hours, but I’m

prepared to give full credit even to incomplete submissions.

Give priority to the correctness of your answers — I count correct answers only.

Rigid System
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Figure 1: a 2 DoF rigid system.

The dynamic system in figure 1 is composed of two rigid, uniform bars each one of mass

mL, a massive dimensionless body of mass 5mL and two springs.

The system has two degrees of freedom, namely x1, the vertical displacement of the

central hinge and x2, the vertical displacement of the massive body.

Compute an estimate of the natural frequency of vibration of the system using the

Rayleigh Quotient method, in terms of its squared value ω2, using the initial trial

vector x0=
{

1 2
}T

.

Compute the structural matrices (hint: xTMx=2T and xTKx=2V ).

Compute a better estimate of said frequency refining your estimates of the strain

and kinetic energies of the system.

Compute the eigenvalues and the corresponding eigenvectors solving the equation

of frequencies.

At time t = 0 the dynamic system is at rest, when it is excited by a vertical force

P(t)=kδsinω2t applied to the central hinge, where ω2 is the natural frequency of the

second mode of vibration.

Write the equation of motion in modal coordinates.

Integrate the equation of motion in modal coordinates.

Solution

Kinetic Energy, Mass Matrix

We have three contributions to the kinetic energy T , the contribution from the

lumped mass is
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TM=
1

2
·5mL·ẋ22

and the contributions from the two rigid bodies, that we can write in terms of the

vertical velocity (the horizontal velocity is identicallly equal to zero) of the center

of mass and the angular velocity for a generic body

TB=
1

2
·mL·ẋ2G+

1

2
·mLL2/12·θ̇2

and specializing for our two bodies, whose state is described by x1 and x2, we have

T1=
1

2
·mL·(ẋ 1

2
)2+

1

2
·mL3/12·(ẋ1/L)2=

1

2
·mL·(1/4+1/12=1/3)ẋ21 ,

T2=
1

2
·mL·(ẋ2/2+ẋ 1

2
)2+

1

2
·mL3/12·(ẋ2/L−ẋ1/L)2=

1

2
·mL(1/3ẋ22+1/3ẋ21+(2/4−2/12=1/3)ẋ2ẋ1.

Putting it all together, we have

T=
1

2
·mL·((1/3+1/3)ẋ21+1/3ẋ1ẋ2+(1/3+5)ẋ22 )=

1

2
·mL·(2/3ẋ21+1/3ẋ1ẋ2+16/3ẋ22 ).

While we are at it, the mass matrix is

M=
mL

6

[
4 1

1 32

]
.

Strain Energy, Stiffness Matrix

The strain energy is exclusively associated with the springs, the contribution of the

extensional spring is 12 ·k ·x
2
1 , while for the flexural spring we have to consider the

relative rotation, 12 ·kL
2·(∆θ)2.

The relative rotation is

∆θ=θ2−θ1=
x2−x1
L
−
x1
L

=
x2−2x1
L

and the strain energy is

V =
1

2
·k ·(x21+x22−4x2x1+4x21 )=

1

2
·k ·(5x21−4x2x1+x22 ).

The stiffness matrix is

K=k

[
5 −2

−2 1

]
.

Rayleigh Quotient

With

x=

{
1

2

}
sinωt, ẋ=ω

{
1

2

}
cosωt
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the maximum energies are it is

V =
1

2
·k ·(5·12−4·1·2+22)=

1

2
·k ·1

and

T=
1

2
ω2·mL·(2/3·12+1/3·1·2+16/3·22)=

1

2
ω2·mL·

68

3

Equating the maximum energies T−V =0 and solving for ω2

ω2=
3

68

k

mL
=0.0441ω20

Better Strain Energy

With x as above, the inertial forces are f =−Mẍ=ω2Mxsinωt and the ensuing

displacements, use the name y , are y=K−1f =ω2K−1Mxsinωt so that a better

approximation of the maximum strain energy is

V =
1

2
yT f =

1

2
ω4xTMK−1Mx.

Substituting and equating to max T ,

ω2=0.03591ω20.

Better Kinetic Energy

We use ẏ=ωK−1Mxcosωt, the kinetic energy is

T=
1

2
ẏTMẏ=

1

2
ω6xTMFMFMx,

substituting and equating to the max strain energy we have

ω2=0.03588ω20.

Response

The equation of frequencies is

det
(
K−ω2M

)
=0

Expanding the determinant we have

127Λ2−1008Λ+36=0

Λ1=
504−

√
5082−126·36

127
=

504−78
√

41

127
=0.03587

Λ2=
504+78

√
41

127
=7.90113142141

The corresponding, normalized eigenvectors are collected in the eigenvector matrix
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Ψ=

[
+0.17071738 +1.21762297

+0.42348370 −0.09823497

]
The equation of motion is

mLM̄ẍ+kK̄x=

{
1

0

}
kδsinω2t

applying the modal trasformation

mLM∗q̈+kK∗q=

{
ψ11
ψ12

}
kδsinω2qt

but eigenvectors are normalized, hence M∗=I, and we divide all terms by mL

q̈+

[
ω21 0

0 ω22

]
q=

{
ψ11
ψ12

}
ω20δsinω2t

or, writing scalar equations

q̈1+ω21q1=ψ11ω
2
0δsinω2t

q̈2+ω22q2=ψ12ω
2
0δsinω2t

The integral is

q1(t)=ψ11δ
ω20

ω21−ω22

(
sinω2t−

ω2
ω1

sinω1t

)
q2(t)=ψ12δ

ω20
ω22−ω22

(
sinω2t−

ω2
ω2

sinω2t

)
=ψ12δ

ω20
2ω22

(sinω2t−ω2tcosω2t)

where the last term was derived applying the rule of De L’Hopital to the indete-

derminate form that results from tha standard solution for sine excitation.

Deformable System
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Figure 2: a deformable system.

A uniform beam, its unit massm, its length L and it flexural stiffness EJ is supported

at its ends by two springs of different stiffness: k0=12EJ/L3 and kL=EJ/12L3 (have

you noticed that one of the springs is much softer than the other one?).

Rayleigh Quotient

Choose an appropriate shape function, motivating your choice (have you noticed

that one of the springs is very soft?), and compute an approximation to the natural

frequency of vibration of the dynamic system.
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Boundary Conditions

Write the four boundary conditions needed to determine the frequencies and the

shapes of vibration of the dynamic system — possibly in terms of the constants

of integration.

Solution

Rayleigh Quotient

If we consider the beam subjected to a uniform load q, its max displacement with

respect to the segment that connects its supports is δmax= 5
584
qL4

EJ while the support

displacements are δ0= qL/2
12EJ/L3 = 1

24
qL4

EJ , δL= qL/2
EJ/12L3 =6qL

4

EJ .

Comparing these values I choose the shape function φ= x
L , i.e., a rigid rotation

about the left end considered fixed.

The maximum value of the strain energy is simply Vmax= 1
2kZ

2
0, for the kinetic

energy we write

T=
1

2
Z20ω

2

∫ L
0

m
(x
L

)2
dx cos2ωt=

1

2
Z20ω

2mL

3
cos2ωt

and Tmax= 1
2Z
2
0ω
2mL
3 so that, equating the max values and solving for ω2 we have

ω2=
kL

mL/3
=

3EJ

12mL4
=

EJ

4mL4
.

Boundary Conditions

The general integral is

ψ=Asinβx+Bcosβx+Csinhβx+Dcoshβx.

The bending moment must be 0 in x=0 and x=L

−EJψ′′(0)=(B−D)EJ=0→D=B.

−EJψ′′(L)=(AsinβL+BcosβL−CsinhβL−Bcoshβ)β2EJ=0

The shear must be equal to the spring reaction, that is directed upwards when

x>0, hence for a shear positive if clockwise we have

V (0)=k0x(0) and −V (L)=kLx(L).

It is

V (x)=−EJψ′′′(x)=EJβ3(Acosβx−Bsinβx−Ccoshβx−Bsinhβx)

and the equilibrium at x=0 is

EJβ3(A−C)=
12EJ

L3
2B→

1

12
β3L3(A−C)−2B=0

while the equilibrium at x=L requires that

EJβ3(AcosβL−BsinβL−CcoshβL−BsinhβL)=

=
EJ

12L3
(AsinβL+BcosβL+CsinhβL+BcoshβL).
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