12 DOF System

The dynamic system in figure is composed of a single, simply supported uniform beam of negligible mass and two dimensionless bodies, both of mass equal to m; neglecting the axial deformability of the beam the dynamic degrees of freedom are the two vertical displacements of the bodies, x_{1} and x_{2}.

The flexibility and stiffness matrices of the dynamic system, considering only the flexural deformability, are

$$
\boldsymbol{F}=\frac{1}{6} \frac{L^{3}}{E J}\left[\begin{array}{ll}
24 & 15 \\
15 & 10
\end{array}\right], \quad \boldsymbol{K}=\frac{2}{5} \frac{E J}{L^{3}}\left[\begin{array}{cc}
10 & -15 \\
-15 & 24
\end{array}\right]
$$

where $E J$ is the flexural stiffness of the beam and L is indicated in figure.
Compute the eigenvalues of the system in terms of the reference value $\omega_{0}^{2}=E J /\left(m L^{3}\right)$, i.e., $\omega_{i}^{2}=\lambda_{i}^{2} \omega_{0}^{2}$.

Compute the eigenvectors of the system in the following format

$$
\boldsymbol{\Psi}=\left[\begin{array}{cc}
1 & \psi_{12} \\
\psi_{21} & 1
\end{array}\right] .
$$

The system is at rest when it is subjected to a vertical motion of its supports, \ddot{v}_{g}. The modal equations of motion can be written

$$
\ddot{q}_{i}+\lambda_{i}^{2} \omega_{0}^{2} q_{i}=a_{i} \ddot{v}_{\mathrm{g}}, \quad i=1,2 .
$$

Determine the numerical values of the coefficients a_{1} and a_{2}.

1.1 Solution

The mass matrix of our system is $M=m \boldsymbol{I}$ and the equation of free vibrations is

$$
\left(\frac{E J}{L^{3}}\left[\begin{array}{ll}
+4.000 & -6.000 \\
-6.000 & +9.600
\end{array}\right]-\omega^{2} m \boldsymbol{I}\right) \boldsymbol{\psi}=\mathbf{0}
$$

that, with the positions given in the text, is equivalent to

$$
\left[\begin{array}{cc}
+4.000-\lambda^{2} & -6.000 \\
-6.000 & +9.600-\lambda^{2}
\end{array}\right] \boldsymbol{\psi}=\mathbf{0}
$$

A non trivial solution is possible when

$$
\operatorname{det}\left(\begin{array}{cc}
+4.000-\lambda^{2} & -6.000 \\
-6.000 & +9.600-\lambda^{2}
\end{array}\right)=\lambda^{2^{2}}-(4+9.6) \lambda^{2}+4 \times 9.6-36=0
$$

The roots of $\lambda^{2^{2}}-2 \times 6.8 \lambda^{2}+2.4=0$ are $\lambda^{2}=6.8 \mp \sqrt{6.8^{2}-2.4}$ and the system eigenvalues are

$$
\omega_{1}^{2}=0.178822 \omega_{0}^{2} \quad \text { and } \quad \omega_{2}^{2}=13.4212 \omega_{0}^{2}
$$

To determine the eigenvectors we will use the first equation,

$$
\left(4-\lambda_{i}^{2}\right) \psi_{1 i}=6 \psi_{2 i}
$$

Substituting, with $\psi_{11}=\psi_{22}=1$ we have

$$
\begin{array}{rlll}
4-0.178822 & =6 \psi_{21} & & \rightarrow \\
(4-13.4212) \psi_{12} & =6 & & \psi
\end{array}
$$

and we can write

$$
\boldsymbol{\Psi}=\left[\begin{array}{cc}
1 & -0.636863 \\
+0.636863 & 1
\end{array}\right]
$$

The equivalent force due to the ground acceleration is

$$
p_{\mathrm{eff}}=-m I\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} \ddot{v}_{\mathrm{g}}=-m\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} \ddot{v}_{\mathrm{g}}
$$

and the equation of motion, in modal coordinates, can be written

$$
M_{i}^{*} \ddot{q}_{i}+\lambda_{i}^{2} M_{i}^{*} q_{i}=-m \Psi^{T}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} \ddot{v}_{\mathrm{g}}=
$$

The modal masses, for $\boldsymbol{M}=m \boldsymbol{I}$, are

$$
M_{i}^{*}=m \sum_{j} \psi_{j i}^{2}
$$

and it is $M_{1}^{*}=M_{2}^{*}=\left(1^{2}+0.636863^{2}\right) m=1.405595 m$, so it is

$$
\begin{aligned}
& a_{1}=\frac{-(1+0.636863) m}{1.405595 m}=-1.164534 \\
& a_{2}=\frac{-(1-0.636863) m}{1.405595 m}=-0.258351
\end{aligned}
$$

2 Single DOF Response

A SDOF system, $m=20 \mathrm{~kg}, k=800 \mathrm{Nm}^{-1}$ and $\zeta=11.4 \%$ is at rest when it is excited by the load

$$
p(t)= \begin{cases}\left(\frac{t}{t_{0}}-\frac{t^{2}}{t_{0}^{2}}\right) 120 \mathrm{~N} & 0 \leq t \leq t_{0}=1 \mathrm{~s} \\ 0 & \text { otherwise }\end{cases}
$$

Determine the particular integral $\xi=a_{0}+a_{1} \frac{t}{t_{0}}+a_{2} \frac{t^{2}}{t_{0}^{2}}$ and the displacement at $t=t_{0}$.

2.1 Solution

The damping coefficient is $c=2 \zeta \sqrt{k m}=28.839972 \mathrm{Ns} \mathrm{m}^{-1}$ and the equation of dynamic equilibrium, written for $x(t)=\xi(t)$ is

$$
k \times\left(a_{0}+\frac{a_{1} t}{t_{0}}+\frac{a_{2} t^{2}}{t_{0}^{2}}\right)+c \times\left(\frac{a_{1}}{t_{0}}+\frac{2 a_{2} t}{t_{0}^{2}}\right)+m \times\left(\frac{2 a_{2}}{t_{0}^{2}}\right)=p_{0} \times\left(\frac{t}{t_{0}}-\frac{t^{2}}{t_{0}^{2}}\right) .
$$

Substituting the numerical values and collecting the powers of t, we have (all terms are forces)

$$
\begin{aligned}
-120 & =800 a_{2} \\
+120 & =800 a_{1}+57.679945 \frac{a_{2}}{1} \\
0 & =800 a_{0}+28.839972 \frac{a_{1}}{1}+40 \frac{a_{2}}{1^{2}}
\end{aligned}
$$

Solving (possibly in sequence) the three above equations gives

$$
a_{0}=0.001703 \mathrm{~m}, \quad a_{1}=0.160815 \mathrm{~m}, \quad a_{2}=-0.150000 \mathrm{~m}
$$

With $\omega_{n}=\sqrt{k / m}=6.324555 \mathrm{rad} \mathrm{s}^{-1}$ and $\omega_{D}=\omega_{n} \sqrt{1-\zeta^{2}}=6.283324 \mathrm{rad} \mathrm{s}^{-1}$ the general integral of the response, the sum of the particular integral and the homogeneous solution, is

$$
\begin{aligned}
& x(t)=\exp \left(-\zeta \omega_{n} t\right)\left(A \cos \omega_{D} t+B \sin \omega_{D} t\right)+\xi(t) \\
& \dot{x}(t)=\exp \left(-\zeta \omega_{n} t\right)\left(\omega_{D}\left(B \cos \omega_{D} t-A \sin \omega_{D} t\right)-\zeta \omega_{n}\left(A \cos \omega_{D} t+B \sin \omega_{D} t\right)\right)+\dot{\zeta}(t)
\end{aligned}
$$

Imposing that the initial displacement and the initial velocity are equal to zero we have

$$
\begin{aligned}
& 0=A+a_{0} \\
& 0=\omega_{D} B-\zeta \omega_{n} A+a_{1} / 1
\end{aligned}
$$

Substituting the numerical values and solving, it is

$$
A=-0.001703 \mathrm{~m}, \quad B=-0.025789 \mathrm{~m} .
$$

Substituting in the general integral and evaluating the response for $t=t_{0}$ it is

$$
x\left(t_{0}\right)=0.011688 \mathrm{~m}
$$

3 Mass Matrix

3.1 Solution

For a rigid rod of mass M and rotatory inertia I moving in a plane the kinetic energy is

$$
T=\frac{1}{2}\left(M\left(\dot{x}_{G}^{2}+\dot{y}_{G}^{2}\right)+I \dot{\phi}^{2}\right)
$$

where \dot{x}_{G}, \dot{y}_{G} are the components of the velocity of the centroid and $\dot{\phi}$ is the angular velocity of the body.

With $M=m L$ and $I=m L^{3} / 12$ we can write the kinetic energy of the two rigid bodies in the system as

$$
\begin{aligned}
& T_{1}=\frac{1}{2}\left(m L\left(\frac{\dot{x}_{1}}{2}\right)^{2}+\frac{m L^{3}}{12}\left(\frac{\dot{x}_{1}}{L}\right)^{2}\right) \\
& T_{2}=\frac{1}{2}\left(m L\left(\frac{\dot{x}_{2}+\dot{x}_{1}}{2}\right)^{2}+\frac{m L^{3}}{12}\left(\frac{\dot{x}_{2}-\dot{x}_{1}}{L}\right)^{2}\right)
\end{aligned}
$$

summing and expanding

$$
T=\frac{1}{2} m L\left(\dot{x}_{1}^{2} / 4+\dot{x}_{1}^{2} / 12+\dot{x}_{1}^{2} / 4+2 \dot{x}_{1} \dot{x}_{2} / 4+\dot{x}_{2}^{2} / 4+\dot{x}_{1}^{2} / 12-2 \dot{x}_{1} \dot{x}_{2} / 12+\dot{x}_{2}^{2} / 12\right)
$$

and simplifying

$$
T=\frac{1}{2} m L\left(\left(\frac{2}{4}+\frac{2}{12}\right) \dot{x}_{1}^{2}+\left(\frac{1}{4}-\frac{1}{12}\right) 2 \dot{x}_{1} \dot{x}_{2}\left(\frac{1}{4}+\frac{1}{12}\right) \dot{x}_{2}^{2}\right)=\frac{1}{2} m L\left(\frac{4}{6} \dot{x}_{1}^{2}+2 \frac{1}{6} \dot{x}_{1} \dot{x}_{2}+\frac{2}{6} \dot{x}_{2}^{2}\right)
$$

By comparison with

$$
T=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{M} \boldsymbol{x}
$$

it is evident that

$$
\boldsymbol{M}=\frac{m L}{6}\left[\begin{array}{ll}
4 & 1 \\
1 & 2
\end{array}\right] .
$$

