2 DOF System

Giacomo Boffi

The dynamical system in figure is composed of two massless, uniform beams supporting a dimensionless body of mass m.

With $\omega_{0}^{2}=(E J) /\left(m L^{3}\right)$ determine the system's eigenvalues $\omega_{i}^{2}=\lambda_{i}^{2} \omega_{0}^{2}$ and the mass normalized eigenvectors.

The system is subjected to a horizontal motion $u_{\mathscr{B}}=u_{\mathscr{B}}(t)$, determine the mass displacements $\boldsymbol{x}_{\mathscr{B}}=$ $\boldsymbol{r} u_{\mathscr{B}}$ and write the modal equations of dynamic equilibrium as

$$
\ddot{q}_{i}+\lambda_{i}^{2} \omega_{0}^{2} q_{i}=\alpha_{i} \ddot{u}_{\mathscr{B}}
$$

determining the numerical values of the α_{i}. \#\# Structural matrices
The flexibility is computed using the Principle of Virtual Displacements,

the stiffness is computed by inversion and the mass matrix is the unit matrix multiplied by $m, \boldsymbol{M}=m \boldsymbol{I}$.

```
l = [1, 1, 1, 2, 1]
m = [[p( 2/3, 0), p(-1/3, 1), p(1, 0), p(2/3, 0), p(4/3, 0)],
    [p(-2/3, 0), p(-2/3, 0), p(0, 0), p(1/3, 0), p(2/3, 0)]]
F = array([[vw(emme, chi, l) for emme in m] for chi in m])
K = inv(F)
M = eye(2)
dl(dmat(r'\boldsymbol{F}=\frac{1}{27}\frac{L^3}{EJ}', F*27, r','))
dl(dmat(r'\boldsymbol{K}=\frac{1}{53}\frac{EJ}{L^3}', K*53, r','))
dl(dmat(r'\boldsymbol{M}=m',M,'.', fmt='%d'))
```

$$
\boldsymbol{F}=\frac{1}{27} \frac{L^{3}}{E J}\left[\begin{array}{ll}
+80 & +13 \tag{1}\\
+13 & +20
\end{array}\right],
$$

$$
\begin{gather*}
\boldsymbol{K}=\frac{1}{53} \frac{E J}{L^{3}}\left[\begin{array}{ll}
+20 & -13 \\
-13 & +80
\end{array}\right], \tag{2}\\
\boldsymbol{M}=m\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \tag{3}
\end{gather*}
$$

0.1 The eigenvalues problem

```
wn2, Psi = eigh(K, M) ; Psi[:,0] *= -1
Lambda2 = diag(wn2)
dl(dmat(r'\boldsymbol{\Lambda^2}=', Lambda2, r'.'))
dl(dmat(r'\boldsymbol{\Psi}=', Psi, r'.'))
```

$$
\begin{align*}
& \boldsymbol{\Lambda}^{2}=\left[\begin{array}{cc}
+0.326499 & +0 \\
+0 & +1.56029
\end{array}\right] . \tag{4}\\
& \boldsymbol{\Psi}=\left[\begin{array}{ll}
+0.979172 & -0.203032 \\
+0.203032 & +0.979172
\end{array}\right] . \tag{5}
\end{align*}
$$

0.2 Mass Displacements and Inertial Forces

We downgrade the hinge in \mathscr{B} to permit a unit horizontal displacement and observe that the centre of instantaneous rotation for the lower beam is at the intersection of the vertical in \mathscr{B} and the line connecting \mathscr{A} and \mathscr{C}.

The angle of rotation of the lower beam is $\theta_{2}=1 / 3 L$, anti-clockwise and the angle of rotation of the upper beam (that rotates about the hinge in \mathscr{A}) is equal but clockwise, due to the continuity of displacements in the internal hinge \mathscr{C}.

Knowing the angle of rotation of the upper beam, the mass displacements are

$$
x_{1}=2 L \frac{1}{3 L}=\frac{2}{3} \quad \text { and } \quad x_{2}=L \frac{1}{3 L}=\frac{1}{3} .
$$

We can eventually write

$$
\boldsymbol{x}_{\mathrm{tot}}=\boldsymbol{x}+\left\{\begin{array}{l}
2 / 3 \\
1 / 3
\end{array}\right\} u_{\mathscr{B}}
$$

and the inertial force can be written as

$$
\boldsymbol{f}_{\mathrm{I}}=\boldsymbol{M} \ddot{\boldsymbol{x}}_{\mathrm{tot}}=\boldsymbol{M} \ddot{\boldsymbol{x}}+\boldsymbol{M}\left\{\begin{array}{l}
2 / 3 \\
1 / 3
\end{array}\right\} \ddot{u}_{\mathscr{B}}
$$

0.3 The Modal Equations of Motion

The equation of motion, in structural coordinates, is

$$
\boldsymbol{M} \ddot{\boldsymbol{x}}+\boldsymbol{K} \boldsymbol{x}=-\boldsymbol{M}\left\{\begin{array}{l}
2 / 3 \tag{6}\\
1 / 3
\end{array}\right\} \ddot{u}_{\mathscr{B}}
$$

or, because $\boldsymbol{M}=m \boldsymbol{I}$,

$$
\boldsymbol{M} \ddot{\boldsymbol{x}}+\boldsymbol{K} \boldsymbol{x}=-m\left\{\begin{array}{l}
2 / 3 \\
1 / 3
\end{array}\right\} \ddot{u}_{\mathscr{B}}
$$

Using the modal expansion, $\boldsymbol{x}=\Psi \boldsymbol{q}$ and premultiplying term by term by Ψ^{T} we have, because the eigenvectors are normalized w / r to the mass matrix,

$$
m \boldsymbol{I} \ddot{\boldsymbol{q}}+m \omega_{0}^{2} \boldsymbol{\Lambda}^{2} \boldsymbol{q}=-m \boldsymbol{\Psi}^{T}\left\{\begin{array}{l}
2 / 3 \\
1 / 3
\end{array}\right\} \ddot{u}_{\mathscr{B}} .
$$

```
r = array((2/3, 1/3))
a = -Psi.T@r
print('The modal equations of motion are')
for i, (ai, l2i) in enumerate(zip(a, wn2), 1):
    dl(r'$$\ddot q_{%d} %+.6f\,\omega_0^2\,q_{%d} = %+.6f\,\ddot u_\mathcal{B}$$' %
        (i, l2i, i, ai))
```

The modal equations of motion are

$$
\begin{aligned}
& \ddot{q}_{1}+0.326499 \omega_{0}^{2} q_{1}=-0.720459 \ddot{u}_{\mathscr{B}} \\
& \ddot{q}_{2}+1.560294 \omega_{0}^{2} q_{2}=-0.191036 \ddot{u}_{\mathscr{B}}
\end{aligned}
$$

```
r = array((1, 1))
a = -Psi.T@r
print('The modal equations of motion are not')
for i, (ai, l2i) in enumerate(zip(a, wn2), 1):
    dl(r'$$\ddot q_{%d} %+.6f\,\omega_0^2\,q_{%d} = %+.6f\,\ddot u_\mathcal{B}$$' %
        (i, l2i, i, ai))
```

The modal equations of motion are not

$$
\begin{aligned}
& \ddot{q}_{1}+0.326499 \omega_{0}^{2} q_{1}=-1.182204 \ddot{u}_{\mathscr{B}} \\
& \ddot{q}_{2}+1.560294 \omega_{0}^{2} q_{2}=-0.776140 \ddot{u}_{\mathscr{B}}
\end{aligned}
$$

0.4 Initialization

```
from numpy import array, diag, eye, poly1d
from scipy.linalg import eigh, inv
def p(*l): return poly1d(l)
def vw(M, X, L):
    return sum(p(l)-p(0) for (m, \chi, l) in zip(M, X, L) for p in ((m*\chi).integ(),))
def dmat(pre, mat, post, mattype='b', fmt='%+.6g'):
    s = r'\begin{align}' + pre + r'\begin{%smatrix}'%mattype
    s += r'\\'.join('&'.join(fmt%val for val in row) for row in mat)
    s += r'\end{%smatrix}'%mattype + post + r'\end{align}'
    return s
def dl(ls):
    display(Latex(ls))
    return None
```

