
Intro Rigid Bodies ConƟnuous Rayleigh QuoƟent

Generalized Single Degree of Freedom Systems

Giacomo Boffi
March 12, 2019

hƩp://intranet.dica.polimi.it/people/boffi-giacomo
DiparƟmento di Ingegneria Civile Ambientale e Territoriale

Politecnico di Milano

Giacomo Boffi Generalized SDOF



Intro Rigid Bodies ConƟnuous Rayleigh QuoƟent

Outline
Introductory Remarks
Assemblage of Rigid Bodies

Rigid Bodies

Rigid Bodies’ CharacterisƟcs

Example
ConƟnuous Systems

IntroducƟon

PVD

Shape FuncƟons?

Example
VibraƟon Analysis by Rayleigh’s Method

Rayleigh QuoƟent Method

SelecƟon of Mode Shapes

Refinement of Rayleigh’s EsƟmates

Giacomo Boffi Generalized SDOF



Intro



Intro Rigid Bodies ConƟnuous Rayleigh QuoƟent

Introductory Remarks

UnƟl now our SDOF’s were described as composed by a single mass connected to a fixed
reference by means of a spring and a damper.

While the mass-spring is a useful representaƟon, many different, more complex systems
can be studied as SDOF systems, either exactly or under some simplifying assumpƟon.

1. SDOF rigid body assemblages, where the flexibility is concentrated in a number of
springs and dampers, can be studied, e.g., using the Principle of Virtual
Displacements and the D’Alembert Principle.

2. simple structural systems can be studied, in an approximate manner, assuming a
fixed paƩern of displacements, whose amplitude (the single degree of freedom)
varies with Ɵme.
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Further Remarks on Rigid Assemblages

Today we restrict our consideraƟon to plane, 2-D systems.

In rigid body assemblages the limitaƟon to a single shape of displacement is a
consequence of the configuraƟon of the system, i.e., the disposiƟon of supports and
internal hinges.

When the equaƟon of moƟon is wriƩen in terms of a single parameter and its Ɵme
derivaƟves, the terms that figure as coefficients in the equaƟon of moƟon can be
regarded as the generalised properƟes of the assemblage: generalised mass, damping
and sƟffness on leŌ hand, generalised loading on right hand.

𝑚⋆𝑥̈ + 𝑐⋆𝑥̇ + 𝑘⋆𝑥 = 𝑝⋆(𝑡)
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Further Remarks on ConƟnuous Systems

ConƟnuous systems have an infinite variety of deformaƟon paƩerns.

By restricƟng the deformaƟon to a single shape of varying amplitude, we introduce an
infinity of internal contstraints that limit the infinite variety of deformaƟon paƩerns, but
under this assumpƟon the system configuraƟon is mathemaƟcally described by a single
parameter, so that

• ourmodel can be analysed in exactly the same way as a strict SDOF system,

• we can compute the generalised mass, damping, sƟffness properƟes of the SDOF
model of the conƟnuous system.
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Final Remarks on Generalised SDOF Systems

From the previous comments, it should be apparent that everything we have seen
regarding the behaviour and the integraƟon of the equaƟon of moƟon of proper SDOF
systems applies to rigid body assemblages and to SDOF models of flexible systems,
provided that we have the means for determining the generalised properƟes of the
dynamical systems under invesƟgaƟon.
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Assemblages of Rigid Bodies

• planar, or bidimensional, rigid bodies, constrained to move in a plane,

• the flexibility is concentrated in discrete elements, springs and dampers,

• rigid bodies are connected to a fixed reference and to each other by means of
springs, dampers and smooth, bilateral constraints (read hinges, double pendulums
and rollers),

• inerƟal forces are distributed forces, acƟng on each material point of each rigid body,
their resultant can be described by

• a force applied to the centre of mass of the body, proporƟonal to acceleraƟon vector
(of the centre of mass itself) and total mass𝑀 = ∫ d𝑚

• a couple, proporƟonal to angular acceleraƟon and the moment of inerƟa 𝐽 of the rigid
body, 𝐽 = ∫(𝑥మ + 𝑦మ)d𝑚.
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Rigid Bar

x

G

L

Unit mass 𝑚̄ = constant,
Length 𝐿,

Centre of Mass 𝑥ீ = 𝐿/2,
Total Mass 𝑚 = 𝑚̄𝐿,

Moment of InerƟa 𝐽 = 𝑚 𝐿ଶ
12 = 𝑚̄ 𝐿ଷ

12
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Rigid Rectangle

G

y

a

b

Unit mass 𝛾 = constant,
Sides 𝑎, 𝑏

Centre of Mass 𝑥ீ = 𝑎/2, 𝑦 = 𝑏/2
Total Mass 𝑚 = 𝛾𝑎𝑏,

Moment of InerƟa 𝐽 = 𝑚𝑎ଶ + 𝑏ଶ
12 = 𝛾𝑎

ଷ𝑏 + 𝑎𝑏ଷ
12
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Rigid Triangle

For a right triangle.

y

G

a

b

Unit mass 𝛾 = constant,
Sides 𝑎, 𝑏

Centre of Mass 𝑥ீ = 𝑎/3, 𝑦 = 𝑏/3
Total Mass 𝑚 = 𝛾𝑎𝑏/2,

Moment of InerƟa 𝐽 = 𝑚𝑎ଶ + 𝑏ଶ
18 = 𝛾𝑎

ଷ𝑏 + 𝑎𝑏ଷ
36
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Rigid Oval

When 𝑎 = 𝑏 = 𝐷 = 2𝑅 the oval is a circle.

x

y

a

b

Unit mass 𝛾 = constant,
Axes 𝑎, 𝑏

Centre of Mass 𝑥ீ = 𝑦 = 0

Total Mass 𝑚 = 𝛾𝜋𝑎𝑏4 ,

Moment of InerƟa 𝐽 = 𝑚𝑎ଶ + 𝑏ଶ
16
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trabacolo1

c k c k2 211

N

m  ,  J2 2

p(x,t) = P x/a f(t)

a 2 a a a a a

The mass of the leŌ bar is𝑚ଵ = 𝑚̄ 4𝑎 and its moment of inerƟa is
𝐽ଵ = 𝑚ଵ

(ସ௔)మ
ଵଶ = 4𝑎ଶ𝑚ଵ/3.

The maximum value of the external load is 𝑃max = 𝑃 4𝑎/𝑎 = 4𝑃 and the resultant of
triangular load is 𝑅 = 4𝑃 × 4𝑎/2 = 8𝑃𝑎
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Forces and Virtual Displacements

௖భ௓̇
ସ

௠భ௓̈
ଶ

ଷ௞భ௓
ସ 𝑐ଶ𝑍̇

ଶ௠మ௓̈
ଷ

௞௓
ଷ

𝑁𝑍(𝑡)

௃మ௓̈
ଷ௔

8𝑃𝑎 𝑓(𝑡)௃భ௓̈
ସ௔

ఋ௓
ସ

ఋ௓
ଶ 3ఋ௓ସ 𝛿𝑍 2ఋ௓ଷ

ఋ௓
ଷ

𝛿𝑢

𝛿𝜃ଶ = 𝛿𝑍/(3𝑎)𝛿𝜃ଵ = 𝛿𝑍/(4𝑎)

𝑢 = 7𝑎 − 4𝑎 cos𝜃భ − 3𝑎 cos𝜃మ, 𝛿𝑢 = 4𝑎 sin𝜃భ𝛿𝜃భ + 3𝑎 sin𝜃మ𝛿𝜃మ
𝛿𝜃భ = 𝛿𝑍/(4𝑎), 𝛿𝜃మ = 𝛿𝑍/(3𝑎)
sin𝜃భ ≈ 𝑍/(4𝑎), sin𝜃మ ≈ 𝑍/(3𝑎)
𝛿𝑢 = ቀ భ

రೌ +
భ
యೌቁ 𝑍 𝛿𝑍 =

ళ
భమೌ𝑍 𝛿𝑍
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Principle of Virtual Displacements
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௓̇
ସ
ఋ௓
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ఋௐS ୀ ି௞భ
ଷ௓
ସ
ଷఋ௓
ସ ି ௞మ

௓
ଷ
ఋ௓
ଷ ୀ ିቆଽ௞భଵ଺ ା ௞మ

ଽ ቇ௓ ఋ௓

ఋௐExt ୀ ଼௉௔ ௙(௧)ଶఋ௓ଷ ା ே ଻
ଵଶ௔௓ ఋ௓
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Principle of Virtual Displacements

For a rigid body in condiƟon of equilibrium the total virtual work must be equal to zero

𝛿𝑊I + 𝛿𝑊D + 𝛿𝑊S + 𝛿𝑊Ext = 0

SubsƟtuƟng our expressions of the virtual work contribuƟons and simplifying 𝛿𝑍, the
equaƟon of equilibrium is

ቆ𝑚ଵ
4 + 4𝑚ଶ

9 + 𝐽ଵ
16𝑎ଶ +

𝐽ଶ
9𝑎ଶቇ 𝑍̈+

+ (𝑐ଶ + 𝑐ଵ/16) 𝑍̇ + ቆ9𝑘ଵ16 + 𝑘ଶ
9 ቇ𝑍 =

8𝑃𝑎 𝑓(𝑡)23 + 𝑁 7
12𝑎𝑍
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Principle of Virtual Displacements

CollecƟng 𝑍 and its Ɵme derivaƟves give us

𝑚⋆𝑍̈ + 𝑐⋆𝑍̇ + 𝑘⋆𝑍 = 𝑝⋆𝑓(𝑡)

introducing the so called generalised properƟes, in our example it is

𝑚⋆ = ଵ
ସ𝑚ଵ +

ସ
ଽ9𝑚ଶ +

ଵ
ଵ଺௔మ 𝐽ଵ +

ଵ
ଽ௔మ 𝐽ଶ,

𝑐⋆ = ଵ
ଵ଺𝑐ଵ + 𝑐ଶ, 𝑘⋆ = ଽ

ଵ଺𝑘ଵ +
ଵ
ଽ𝑘ଶ −

଻
ଵଶ௔𝑁, 𝑝⋆ = ଵ଺

ଷ 𝑃𝑎.

It is worth wriƟng down the expres-
sion of 𝑘⋆:

𝑘⋆ = 9𝑘ଵ
16 + 𝑘ଶ

9 −
7
12𝑎𝑁
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Intro Rigid Bodies ConƟnuous Rayleigh QuoƟent IntroducƟon PVD Shape FuncƟons? Example

Let’s start with an example...

Consider a canƟlever, with varying
properƟes 𝑚̄ and 𝐸𝐽, subjected to a
dynamic load that is funcƟon of both
Ɵme 𝑡 and posiƟon 𝑥,

𝑝 = 𝑝(𝑥, 𝑡).
𝑥 𝑚̄ = 𝑚̄(𝑥)

𝑁

𝐸𝐽 = 𝐸𝐽(𝑥)𝑣(𝑥, 𝑡)

𝑝(𝑥, 𝑡)

𝐻

Even the transverse displacements 𝑣 will be funcƟon of Ɵme and posiƟon,

𝑣 = 𝑣(𝑥, 𝑡)

and because the inerƟal forces depend on 𝑣̈ = డమ௩/డ௧మ and the elasƟc forces on
𝑣ᇳ = డమ௩/డ௫మ the equaƟon of dynamic equilibrium must be wriƩen in terms of a parƟal
derivaƟves differenƟal equaƟon.
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Intro Rigid Bodies ConƟnuous Rayleigh QuoƟent IntroducƟon PVD Shape FuncƟons? Example

... and an hypothesis

To study the previous problem, we introduce an approximate model by the following
hypothesis,

𝑣(𝑥, 𝑡) = Ψ(𝑥) 𝑍(𝑡),

that is, the hypothesis of separaƟon of variables

Note thatΨ(𝑥), the shape funcƟon, is adimensional, while 𝑍(𝑡) is dimensionally a
generalised displacement, usually chosen to characterise the structural behaviour.

In our example we can use the displacement of the Ɵp of the chimney, thus implying that
Ψ(𝐻) = 1 because

𝑍(𝑡) = 𝑣(𝐻, 𝑡) and

𝑣(𝐻, 𝑡) = Ψ(𝐻)𝑍(𝑡)
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Intro Rigid Bodies ConƟnuous Rayleigh QuoƟent IntroducƟon PVD Shape FuncƟons? Example

Principle of Virtual Displacements

For a flexible system, the PoVD states that, at equilibrium,

𝛿𝑊E = 𝛿𝑊I.

The virtual work of external forces can be easily computed, the virtual work of internal
forces is usually approximated by the virtual work done by bending moments, that is

𝛿𝑊I ≈ න𝑀𝛿𝜒

where 𝜒 is the curvature and 𝛿𝜒 the virtual increment of curvature.
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𝛿𝑊E

The external forces are 𝑝(𝑥, 𝑡), 𝑁 and the forces of inerƟa 𝑓I; we have, by separaƟon of
variables, that 𝛿𝑣 = Ψ(𝑥)𝛿𝑍 and we can write

𝛿𝑊p = න
ு

଴
𝑝(𝑥, 𝑡)𝛿𝑣 d𝑥 = ቈන

ு

଴
𝑝(𝑥, 𝑡)Ψ(𝑥) d𝑥቉ 𝛿𝑍 = 𝑝⋆(𝑡) 𝛿𝑍

𝛿𝑊InerƟa = න
ு

଴
−𝑚̄(𝑥)𝑣̈𝛿𝑣 d𝑥 = න

ு

଴
−𝑚̄(𝑥)Ψ(𝑥)𝑍̈Ψ(𝑥) d𝑥 𝛿𝑍

= ቈන
ு

଴
−𝑚̄(𝑥)Ψଶ(𝑥) d𝑥቉ 𝑍̈(𝑡) 𝛿𝑍 = 𝑚⋆𝑍̈ 𝛿𝑍.

The virtual work done by the axial force deserves a separate treatment...
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Intro Rigid Bodies ConƟnuous Rayleigh QuoƟent IntroducƟon PVD Shape FuncƟons? Example

𝛿𝑊N

The virtual work of ே is ఋௐN ୀ ேఋ௨ where ఋ௨ is the variaƟon of the verƟcal displacement of the top of the
chimney.

We start compuƟng the verƟcal displacement of the top of the chimney in terms of the rotaƟon of the axis
line,థ ≈ ஏᇲ(௫)௓(௧),

௨(௧) ୀ ு ିන
ಹ

బ
cosథ d௫ ୀ න

ಹ

బ
(ଵ ି cosథ) d௫,

subsƟtuƟng the well known approximaƟon ௖௢௦థ ≈ ଵ ି ഝమ

మ in the above equaƟon we have

௨(௧) ୀ න
ಹ

బ

థమ

ଶ d௫ ୀ න
ಹ

బ

ஏᇲమ(௫)௓మ(௧)
ଶ d௫ ⇒

⇒ ఋ௨ ୀ න
ಹ

బ
ஏᇲమ(௫)௓(௧)ఋ௓ d௫ ୀ න

ಹ

బ
ஏᇲమ(௫) d௫ ௓ఋ௓

and

ఋௐN ୀ ቈන
ಹ

బ
ஏᇲమ(௫) d௫ ே቉ ௓ ఋ௓ ୀ ௞⋆ಸ ௓ ఋ௓
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𝛿𝑊Int

ApproximaƟng the internal work with the work done by bending moments, for an
infinitesimal slice of beam we write

d𝑊Int =
1
2𝑀𝑣"(𝑥, 𝑡) d𝑥 =

1
2𝑀Ψ"(𝑥)𝑍(𝑡) d𝑥

with𝑀 = 𝐸𝐽(𝑥)𝑣"(𝑥)

𝛿(d𝑊Int) = 𝐸𝐽(𝑥)Ψ"ଶ(𝑥)𝑍(𝑡)𝛿𝑍 d𝑥

integraƟng

𝛿𝑊Int = ቈන
ு

଴
𝐸𝐽(𝑥)Ψ"ଶ(𝑥) d𝑥቉ 𝑍𝛿𝑍 = 𝑘⋆ 𝑍 𝛿𝑍
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Remarks

• the shape funcƟonmust respect the geometrical boundary condiƟons of the
problem, i.e., both

Ψଵ = 𝑥ଶ and Ψଶ = 1 − cos
𝜋𝑥
2𝐻

are acceƩable shape funcƟons for our example, asΨଵ(0) = Ψଶ(0) = 0 and
Ψᇱ
ଵ(0) = Ψᇱ

ଶ(0) = 0

• beƩer results are obtained when the second derivaƟve of the shape funcƟon at least
resembles the typical distribuƟon of bending moments in our problem, so that
between

Ψᇱᇱ
ଵ = constant and Ψଶ" =

𝜋ଶ
4𝐻ଶ cos

𝜋𝑥
2𝐻

the second choice is preferable.
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Remarks
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Example

UsingΨ(𝑥) = 1 − cos గ௫
ଶு , with 𝑚̄ = constant and 𝐸𝐽 = constant, with a load

characterisƟc of seismic excitaƟon, 𝑝(𝑡) = −𝑚̄𝑣̈௚(𝑡),

𝑚⋆ = 𝑚̄න
ு

଴
(1 − cos

𝜋𝑥
2𝐻)

ଶ d𝑥 = 𝑚̄(32 −
4
𝜋)𝐻

𝑘⋆ = 𝐸𝐽 𝜋ସ
16𝐻ସ න

ு

଴
cosଶ

𝜋𝑥
2𝐻 d𝑥 = 𝜋ସ

32
𝐸𝐽
𝐻ଷ

𝑘⋆ீ = 𝑁 𝜋ଶ
4𝐻ଶ න

ு

଴
sinଶ

𝜋𝑥
2𝐻 d𝑥 = 𝜋ଶ

8𝐻𝑁

𝑝⋆௚ = −𝑚̄𝑣̈௚(𝑡)න
ு

଴
1 − cos

𝜋𝑥
2𝐻 d𝑥 = −ቆ1 − 2

𝜋ቇ 𝑚̄𝐻 𝑣̈௚(𝑡)
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Intro Rigid Bodies ConƟnuous Rayleigh QuoƟent Rayleigh QuoƟent Shapes Refinement

VibraƟon Analysis

• The process of esƟmaƟng the vibraƟon characterisƟcs of a complex system is known
as vibraƟon analysis.

• We can use our previous results for flexible systems, based on the SDOF model, to
give an esƟmate of the natural frequency 𝜔ଶ = 𝑘⋆/𝑚⋆

• A different approach, proposed by Lord Rayleigh, starts from different premises to
give the same results but the Rayleigh’s QuoƟent method is important because it
offers a beƩer understanding of the vibraƟonal behaviour, eventually leading to
successive refinements of the first esƟmate of 𝜔ଶ.
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Rayleigh’s QuoƟent Method

Our focus will be on the free vibraƟon of a flexible, undamped system.

• inspired by the free vibraƟons of a proper SDOF we write

𝑍(𝑡) = 𝑍଴ sin𝜔𝑡 and

𝑣(𝑥, 𝑡) = 𝑍଴Ψ(𝑥) sin𝜔𝑡,
𝑣̇(𝑥, 𝑡) = 𝜔 𝑍଴Ψ(𝑥) cos𝜔𝑡.

• the displacement and the velocity are in quadrature: when 𝑣 is at its maximum
𝑣̇ = 0, hence 𝑉 = 𝑉max, 𝑇 = 0 and when 𝑣̇ is at its maximum it is 𝑣 = 0, hence
𝑉 = 0, 𝑇 = 𝑇max,

• disregarding damping, the energy of the system is constant during free vibraƟons,

𝑉max + 0 = 0 + 𝑇max

Giacomo Boffi Generalized SDOF
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𝑣̇ = 0, hence 𝑉 = 𝑉max, 𝑇 = 0 and when 𝑣̇ is at its maximum it is 𝑣 = 0, hence
𝑉 = 0, 𝑇 = 𝑇max,

• disregarding damping, the energy of the system is constant during free vibraƟons,

𝑉max + 0 = 0 + 𝑇max
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Rayleigh’ s QuoƟent Method

Now we write the expressions for 𝑉max and 𝑇max,

𝑉max =
1
2𝑍

ଶ
଴න

ௌ
𝐸𝐽(𝑥)Ψᇱᇱଶ(𝑥) d𝑥,

𝑇max =
1
2𝜔

ଶ𝑍ଶ଴න
ௌ
𝑚̄(𝑥)Ψଶ(𝑥) d𝑥,

equaƟng the two expressions and solving for 𝜔ଶ we have

𝜔ଶ = ∫ௌ 𝐸𝐽(𝑥)Ψᇱᇱଶ(𝑥) d𝑥
∫ௌ 𝑚̄(𝑥)Ψଶ(𝑥) d𝑥 .

Recognizing the expressions we found for 𝑘⋆ and𝑚⋆ we could quesƟon the uƟlity of
Rayleigh’s QuoƟent...
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Rayleigh’s QuoƟent Method

• in Rayleigh’s method we know the specific Ɵme dependency of the inerƟal forces

𝑓I = −𝑚̄(𝑥)𝑣̈ = 𝑚̄(𝑥)𝜔ଶ𝑍଴Ψ(𝑥) sin𝜔𝑡

𝑓I has the same shape we use for displacements.
• ifΨ were the real shape assumed by the structure in free vibraƟons, the

displacements 𝑣 due to a loading 𝑓I = 𝜔ଶ𝑚̄(𝑥)Ψ(𝑥)𝑍଴ should be proporƟonal to
Ψ(𝑥) through a constant factor, with equilibrium respected in every point of the
structure during free vibraƟons.

• starƟng from a shape funcƟonΨ଴(𝑥), a new shape funcƟonΨଵ can be determined
normalizing the displacements due to the inerƟal forces associated withΨ଴(𝑥),
𝑓I = 𝑚̄(𝑥)Ψ଴(𝑥),

• we are going to demonstrate that the new shape funcƟon is a beƩer approximaƟon
of the true mode shape
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SelecƟon of mode shapes

Given different shape funcƟonsΨ௜ and considering the true shape of free vibraƟonΨ, in
the former cases equilibrium is not respected by the structure itself.

To keep inerƟa induced deformaƟon proporƟonal toΨ௜ we must consider the presence of
addiƟonal elasƟc constraints. This leads to the following consideraƟons

• the frequency of vibraƟon of a structure with addiƟonal constraints is higher than
the true natural frequency,

• the criterium to discriminate between different shape funcƟons is: beƩer shape
funcƟons give lower esƟmates of the natural frequency, the true natural frequency
being a lower bound of all esƟmates.
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SelecƟon of mode shapes 2

In general the selecƟon of trial shapes goes through two steps,

1. the analyst considers the flexibiliƟes of different parts of the structure and the
presence of symmetries to devise an approximate shape,

2. the structure is loaded with constant loads directed as the assumed displacements,
the displacements are computed and used as the shape funcƟon,

of course a liƩle pracƟce helps a lot in the the choice of a proper paƩern of loading...
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SelecƟon of mode shapes 3

𝑝 = 𝑚(𝑥)

𝑃 = 𝑀

𝑝 = 𝑚(𝑥)

𝑝
=
𝑚
(𝑥
)

𝑝 = 𝑚(𝑥)
(௔)

(௕) (௖)

(ௗ)
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Refinement 𝑅଴଴

Choose a trial funcƟonΨ(଴)(𝑥) and write

𝑣(଴) = Ψ(଴)(𝑥)𝑍(଴) sin𝜔𝑡

𝑉max =
1
2𝑍

(଴)ଶන𝐸𝐽Ψ(଴)ᇱᇱଶ d𝑥

𝑇max =
1
2𝜔

ଶ𝑍(଴)ଶන𝑚̄Ψ(଴)ଶ d𝑥

our first esƟmate 𝑅଴଴ of 𝜔ଶ is

𝜔ଶ = ∫𝐸𝐽Ψ(଴)ᇱᇱଶ d𝑥
∫ 𝑚̄Ψ(଴)ଶ d𝑥 .
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Refinement 𝑅଴ଵ
We try to give a beƩer esƟmate of 𝑉max compuƟng the external work done by the inerƟal
forces,

𝑝(଴) = 𝜔ଶ𝑚̄(𝑥)𝑣(଴) = 𝑍(଴)𝜔ଶΨ(଴)(𝑥)
the deflecƟons due to 𝑝(଴) are

𝑣(ଵ) = 𝜔ଶ𝑣(ଵ)
𝜔ଶ = 𝜔ଶΨ(ଵ)𝑍(ଵ)

𝜔ଶ = 𝜔ଶΨ(ଵ)𝑍̄(ଵ),

where we write 𝑍̄(ଵ) because we need to keep the unknown 𝜔ଶ in evidence. The
maximum strain energy is

𝑉max =
1
2 න𝑝(଴)𝑣(ଵ) d𝑥 = 1

2𝜔
ସ𝑍(଴)𝑍̄(ଵ)න𝑚̄(𝑥)Ψ(଴)Ψ(ଵ) d𝑥

EquaƟng to our previus esƟmate of 𝑇max we find the 𝑅଴ଵ esƟmate

𝜔ଶ = 𝑍(଴)
𝑍̄(ଵ)

∫ 𝑚̄(𝑥)Ψ(଴)Ψ(଴) d𝑥
∫ 𝑚̄(𝑥)Ψ(଴)Ψ(ଵ) d𝑥
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Refinement 𝑅ଵଵ

With liƩle addiƟonal effort it is possible to compute 𝑇max from 𝑣(ଵ):

𝑇max =
1
2𝜔

ଶන𝑚̄(𝑥)𝑣(ଵ)ଶ d𝑥 = 1
2𝜔

଺𝑍̄(ଵ)ଶන𝑚̄(𝑥)Ψ(ଵ)ଶ d𝑥

equaƟng to our last approximaƟon for 𝑉max we have the 𝑅ଵଵ approximaƟon to the
frequency of vibraƟon,

𝜔ଶ = 𝑍(଴)
𝑍̄(ଵ)

∫ 𝑚̄(𝑥)Ψ(଴)Ψ(ଵ) d𝑥
∫ 𝑚̄(𝑥)Ψ(ଵ)Ψ(ଵ) d𝑥 .

Of course the procedure can be extended to compute beƩer and beƩer esƟmates of 𝜔ଶ

but usually the refinements are not extended beyond 𝑅ଵଵ, because it would be
contradictory with the quick esƟmate nature of the Rayleigh’s QuoƟent method and also
because 𝑅ଵଵ esƟmates are usually very good ones.
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