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Introductory Remarks

Un l now our SDOF’s were described as composed by a single mass connected to a fixed
reference by means of a spring and a damper.

While the mass-spring is a useful representa on, many different, more complex systems
can be studied as SDOF systems, either exactly or under some simplifying assump on.

1. SDOF rigid body assemblages, where the flexibility is concentrated in a number of
springs and dampers, can be studied, e.g., using the Principle of Virtual
Displacements and the D’Alembert Principle.

2. simple structural systems can be studied, in an approximate manner, assuming a
fixed pa ern of displacements, whose amplitude (the single degree of freedom)
varies with me.
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Further Remarks on Rigid Assemblages

Today we restrict our considera on to plane, 2-D systems.

In rigid body assemblages the limita on to a single shape of displacement is a
consequence of the configura on of the system, i.e., the disposi on of supports and
internal hinges.

When the equa on of mo on is wri en in terms of a single parameter and its me
deriva ves, the terms that figure as coefficients in the equa on of mo on can be
regarded as the generalised proper es of the assemblage: generalised mass, damping
and s ffness on le hand, generalised loading on right hand.

𝑚⋆�̈� + 𝑐⋆�̇� + 𝑘⋆𝑥 = 𝑝⋆(𝑡)
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Further Remarks on Con nuous Systems

Con nuous systems have an infinite variety of deforma on pa erns.

By restric ng the deforma on to a single shape of varying amplitude, we introduce an
infinity of internal contstraints that limit the infinite variety of deforma on pa erns, but
under this assump on the system configura on is mathema cally described by a single
parameter, so that

• ourmodel can be analysed in exactly the same way as a strict SDOF system,

• we can compute the generalised mass, damping, s ffness proper es of the SDOF
model of the con nuous system.
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Final Remarks on Generalised SDOF Systems

From the previous comments, it should be apparent that everything we have seen
regarding the behaviour and the integra on of the equa on of mo on of proper SDOF
systems applies to rigid body assemblages and to SDOF models of flexible systems,
provided that we have the means for determining the generalised proper es of the
dynamical systems under inves ga on.

Giacomo Boffi Generalized SDOF



Rigid Bodies



Intro Rigid Bodies Con nuous Rayleigh Quo ent Rigid Bodies Characteris cs Example

Assemblages of Rigid Bodies

• planar, or bidimensional, rigid bodies, constrained to move in a plane,

• the flexibility is concentrated in discrete elements, springs and dampers,

• rigid bodies are connected to a fixed reference and to each other by means of
springs, dampers and smooth, bilateral constraints (read hinges, double pendulums
and rollers),

• iner al forces are distributed forces, ac ng on each material point of each rigid body,
their resultant can be described by

• a force applied to the centre of mass of the body, propor onal to accelera on vector
(of the centre of mass itself) and total mass𝑀 = ∫ d𝑚

• a couple, propor onal to angular accelera on and the moment of iner a 𝐽 of the rigid
body, 𝐽 = ∫(𝑥 + 𝑦 )d𝑚.
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Rigid Bar

x

G

L

Unit mass �̄� = constant,
Length 𝐿,

Centre of Mass 𝑥 = 𝐿/2,
Total Mass 𝑚 = �̄�𝐿,

Moment of Iner a 𝐽 = 𝑚 𝐿
12 = �̄� 𝐿

12
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Rigid Rectangle

G

y

a

b

Unit mass 𝛾 = constant,
Sides 𝑎, 𝑏

Centre of Mass 𝑥 = 𝑎/2, 𝑦 = 𝑏/2
Total Mass 𝑚 = 𝛾𝑎𝑏,

Moment of Iner a 𝐽 = 𝑚𝑎 + 𝑏
12 = 𝛾𝑎 𝑏 + 𝑎𝑏

12
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Rigid Triangle

For a right triangle.

y

G

a

b

Unit mass 𝛾 = constant,
Sides 𝑎, 𝑏

Centre of Mass 𝑥 = 𝑎/3, 𝑦 = 𝑏/3
Total Mass 𝑚 = 𝛾𝑎𝑏/2,

Moment of Iner a 𝐽 = 𝑚𝑎 + 𝑏
18 = 𝛾𝑎 𝑏 + 𝑎𝑏

36
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Rigid Oval

When 𝑎 = 𝑏 = 𝐷 = 2𝑅 the oval is a circle.

x

y

a

b

Unit mass 𝛾 = constant,
Axes 𝑎, 𝑏

Centre of Mass 𝑥 = 𝑦 = 0

Total Mass 𝑚 = 𝛾𝜋𝑎𝑏4 ,

Moment of Iner a 𝐽 = 𝑚𝑎 + 𝑏
16
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trabacolo1

c k c k2 211

N

m  ,  J2 2

p(x,t) = P x/a f(t)

a 2 a a a a a

The mass of the le bar is𝑚 = �̄� 4𝑎 and its moment of iner a is
𝐽 = 𝑚 ( ) = 4𝑎 𝑚 /3.
The maximum value of the external load is 𝑃max = 𝑃 4𝑎/𝑎 = 4𝑃 and the resultant of
triangular load is 𝑅 = 4𝑃 × 4𝑎/2 = 8𝑃𝑎
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Forces and Virtual Displacements

̇ ̈ 𝑐 �̇� ̈

𝑁𝑍(𝑡)

̈8𝑃𝑎 𝑓(𝑡)̈

3 𝛿𝑍 2

𝛿𝑢

𝛿𝜃 = 𝛿𝑍/(3𝑎)𝛿𝜃 = 𝛿𝑍/(4𝑎)

𝑢 = 7𝑎 − 4𝑎 cos𝜃 − 3𝑎 cos𝜃 , 𝛿𝑢 = 4𝑎 sin𝜃 𝛿𝜃 + 3𝑎 sin𝜃 𝛿𝜃
𝛿𝜃 = 𝛿𝑍/(4𝑎), 𝛿𝜃 = 𝛿𝑍/(3𝑎)
sin𝜃 ≈ 𝑍/(4𝑎), sin𝜃 ≈ 𝑍/(3𝑎)
𝛿𝑢 = + 𝑍 𝛿𝑍 = 𝑍 𝛿𝑍
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Principle of Virtual Displacements
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I

̈ ̈ ̈ ̈ ̈

D

̇
( / ) ̇

S

Ext ( )
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Principle of Virtual Displacements

For a rigid body in condi on of equilibrium the total virtual work must be equal to zero

𝛿𝑊I + 𝛿𝑊D + 𝛿𝑊S + 𝛿𝑊Ext = 0

Subs tu ng our expressions of the virtual work contribu ons and simplifying 𝛿𝑍, the
equa on of equilibrium is

𝑚
4 + 4𝑚9 + 𝐽

16𝑎 + 𝐽
9𝑎 �̈�+

+ (𝑐 + 𝑐 /16) �̇� + 9𝑘
16 + 𝑘

9 𝑍 =

8𝑃𝑎 𝑓(𝑡)23 + 𝑁 7
12𝑎𝑍
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Principle of Virtual Displacements

Collec ng 𝑍 and its me deriva ves give us

𝑚⋆�̈� + 𝑐⋆�̇� + 𝑘⋆𝑍 = 𝑝⋆𝑓(𝑡)

introducing the so called generalised proper es, in our example it is

𝑚⋆ = 𝑚 + 9𝑚 + 𝐽 + 𝐽 ,
𝑐⋆ = 𝑐 + 𝑐 , 𝑘⋆ = 𝑘 + 𝑘 − 𝑁, 𝑝⋆ = 𝑃𝑎.

It is worth wri ng down the expres-
sion of 𝑘⋆:

𝑘⋆ = 9𝑘
16 + 𝑘

9 −
7
12𝑎𝑁
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12𝑎𝑁

Geometrical s ffness
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Let’s start with an example...

Consider a can lever, with varying
proper es �̄� and 𝐸𝐽, subjected to a
dynamic load that is func on of both
me 𝑡 and posi on 𝑥,

𝑝 = 𝑝(𝑥, 𝑡).
𝑥 �̄� = �̄�(𝑥)

𝑁

𝐸𝐽 = 𝐸𝐽(𝑥)𝑣(𝑥, 𝑡)

𝑝(𝑥, 𝑡)

𝐻

Even the transverse displacements 𝑣 will be func on of me and posi on,

𝑣 = 𝑣(𝑥, 𝑡)

and because the iner al forces depend on �̈� = / and the elas c forces on
𝑣 = / the equa on of dynamic equilibrium must be wri en in terms of a par al
deriva ves differen al equa on.

Giacomo Boffi Generalized SDOF



Intro Rigid Bodies Con nuous Rayleigh Quo ent Introduc on PVD Shape Func ons? Example

Let’s start with an example...

Consider a can lever, with varying
proper es �̄� and 𝐸𝐽, subjected to a
dynamic load that is func on of both
me 𝑡 and posi on 𝑥,

𝑝 = 𝑝(𝑥, 𝑡).
𝑥 �̄� = �̄�(𝑥)

𝑁

𝐸𝐽 = 𝐸𝐽(𝑥)𝑣(𝑥, 𝑡)

𝑝(𝑥, 𝑡)

𝐻

Even the transverse displacements 𝑣 will be func on of me and posi on,

𝑣 = 𝑣(𝑥, 𝑡)

and because the iner al forces depend on �̈� = / and the elas c forces on
𝑣 = / the equa on of dynamic equilibrium must be wri en in terms of a par al
deriva ves differen al equa on.

Giacomo Boffi Generalized SDOF



Intro Rigid Bodies Con nuous Rayleigh Quo ent Introduc on PVD Shape Func ons? Example

... and an hypothesis

To study the previous problem, we introduce an approximate model by the following
hypothesis,

𝑣(𝑥, 𝑡) = Ψ(𝑥) 𝑍(𝑡),

that is, the hypothesis of separa on of variables

Note thatΨ(𝑥), the shape func on, is adimensional, while 𝑍(𝑡) is dimensionally a
generalised displacement, usually chosen to characterise the structural behaviour.

In our example we can use the displacement of the p of the chimney, thus implying that
Ψ(𝐻) = 1 because

𝑍(𝑡) = 𝑣(𝐻, 𝑡) and

𝑣(𝐻, 𝑡) = Ψ(𝐻)𝑍(𝑡)
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Principle of Virtual Displacements

For a flexible system, the PoVD states that, at equilibrium,

𝛿𝑊E = 𝛿𝑊I.

The virtual work of external forces can be easily computed, the virtual work of internal
forces is usually approximated by the virtual work done by bending moments, that is

𝛿𝑊I ≈ 𝑀𝛿𝜒

where 𝜒 is the curvature and 𝛿𝜒 the virtual increment of curvature.

Giacomo Boffi Generalized SDOF
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𝛿𝑊E

The external forces are 𝑝(𝑥, 𝑡), 𝑁 and the forces of iner a 𝑓I; we have, by separa on of
variables, that 𝛿𝑣 = Ψ(𝑥)𝛿𝑍 and we can write

𝛿𝑊p = 𝑝(𝑥, 𝑡)𝛿𝑣 d𝑥 = 𝑝(𝑥, 𝑡)Ψ(𝑥) d𝑥 𝛿𝑍 = 𝑝⋆(𝑡) 𝛿𝑍

𝛿𝑊Iner a = −�̄�(𝑥)�̈�𝛿𝑣 d𝑥 = −�̄�(𝑥)Ψ(𝑥)�̈�Ψ(𝑥) d𝑥 𝛿𝑍

= −�̄�(𝑥)Ψ (𝑥) d𝑥 �̈�(𝑡) 𝛿𝑍 = 𝑚⋆�̈� 𝛿𝑍.

The virtual work done by the axial force deserves a separate treatment...
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𝛿𝑊N

The virtual work of is N where is the varia on of the ver cal displacement of the top of the
chimney.

We start compu ng the ver cal displacement of the top of the chimney in terms of the rota on of the axis
line, ≈ ( ) ( ),

( ) cos d ( cos ) d ,

subs tu ng the well known approxima on ≈ in the above equa on we have

( ) d
( ) ( )

d ⇒

⇒ ( ) ( ) d ( ) d

and

N ( ) d ⋆
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𝛿𝑊Int

Approxima ng the internal work with the work done by bending moments, for an
infinitesimal slice of beam we write

d𝑊Int =
1
2𝑀𝑣"(𝑥, 𝑡) d𝑥 =

1
2𝑀Ψ"(𝑥)𝑍(𝑡) d𝑥

with𝑀 = 𝐸𝐽(𝑥)𝑣"(𝑥)

𝛿(d𝑊Int) = 𝐸𝐽(𝑥)Ψ" (𝑥)𝑍(𝑡)𝛿𝑍 d𝑥

integra ng

𝛿𝑊Int = 𝐸𝐽(𝑥)Ψ" (𝑥) d𝑥 𝑍𝛿𝑍 = 𝑘⋆ 𝑍 𝛿𝑍
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Remarks

• the shape func onmust respect the geometrical boundary condi ons of the
problem, i.e., both

Ψ = 𝑥 and Ψ = 1 − cos
𝜋𝑥
2𝐻

are acce able shape func ons for our example, asΨ (0) = Ψ (0) = 0 and
Ψ (0) = Ψ (0) = 0

• be er results are obtained when the second deriva ve of the shape func on at least
resembles the typical distribu on of bending moments in our problem, so that
between

Ψ = constant and Ψ " = 𝜋
4𝐻 cos

𝜋𝑥
2𝐻

the second choice is preferable.
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Example

UsingΨ(𝑥) = 1 − cos , with �̄� = constant and 𝐸𝐽 = constant, with a load
characteris c of seismic excita on, 𝑝(𝑡) = −�̄��̈� (𝑡),

𝑚⋆ = �̄� (1 − cos
𝜋𝑥
2𝐻) d𝑥 = �̄�(32 −

4
𝜋)𝐻

𝑘⋆ = 𝐸𝐽 𝜋
16𝐻 cos

𝜋𝑥
2𝐻 d𝑥 = 𝜋

32
𝐸𝐽
𝐻

𝑘⋆ = 𝑁 𝜋
4𝐻 sin

𝜋𝑥
2𝐻 d𝑥 = 𝜋

8𝐻𝑁

𝑝⋆ = −�̄��̈� (𝑡) 1 − cos
𝜋𝑥
2𝐻 d𝑥 = − 1 − 2

𝜋 �̄�𝐻 �̈� (𝑡)

Giacomo Boffi Generalized SDOF



Rayleigh Quo ent



Intro Rigid Bodies Con nuous Rayleigh Quo ent Rayleigh Quo ent Shapes Refinement

Vibra on Analysis

• The process of es ma ng the vibra on characteris cs of a complex system is known
as vibra on analysis.

• We can use our previous results for flexible systems, based on the SDOF model, to
give an es mate of the natural frequency 𝜔 = 𝑘⋆/𝑚⋆

• A different approach, proposed by Lord Rayleigh, starts from different premises to
give the same results but the Rayleigh’s Quo ent method is important because it
offers a be er understanding of the vibra onal behaviour, eventually leading to
successive refinements of the first es mate of 𝜔 .
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Rayleigh’s Quo ent Method

Our focus will be on the free vibra on of a flexible, undamped system.

• inspired by the free vibra ons of a proper SDOF we write

𝑍(𝑡) = 𝑍 sin𝜔𝑡 and

𝑣(𝑥, 𝑡) = 𝑍 Ψ(𝑥) sin𝜔𝑡,
�̇�(𝑥, 𝑡) = 𝜔 𝑍 Ψ(𝑥) cos𝜔𝑡.

• the displacement and the velocity are in quadrature: when 𝑣 is at its maximum
�̇� = 0, hence 𝑉 = 𝑉max, 𝑇 = 0 and when �̇� is at its maximum it is 𝑣 = 0, hence
𝑉 = 0, 𝑇 = 𝑇max,

• disregarding damping, the energy of the system is constant during free vibra ons,

𝑉max + 0 = 0 + 𝑇max
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Rayleigh’ s Quo ent Method

Now we write the expressions for 𝑉max and 𝑇max,

𝑉max =
1
2𝑍 𝐸𝐽(𝑥)Ψ (𝑥) d𝑥,

𝑇max =
1
2𝜔 𝑍 �̄�(𝑥)Ψ (𝑥) d𝑥,

equa ng the two expressions and solving for 𝜔 we have

𝜔 = ∫ 𝐸𝐽(𝑥)Ψ (𝑥) d𝑥
∫ �̄�(𝑥)Ψ (𝑥) d𝑥 .

Recognizing the expressions we found for 𝑘⋆ and𝑚⋆ we could ques on the u lity of
Rayleigh’s Quo ent...
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Rayleigh’s Quo ent Method

• in Rayleigh’s method we know the specific me dependency of the iner al forces

𝑓I = −�̄�(𝑥)�̈� = �̄�(𝑥)𝜔 𝑍 Ψ(𝑥) sin𝜔𝑡

𝑓I has the same shape we use for displacements.
• ifΨ were the real shape assumed by the structure in free vibra ons, the

displacements 𝑣 due to a loading 𝑓I = 𝜔 �̄�(𝑥)Ψ(𝑥)𝑍 should be propor onal to
Ψ(𝑥) through a constant factor, with equilibrium respected in every point of the
structure during free vibra ons.

• star ng from a shape func onΨ (𝑥), a new shape func onΨ can be determined
normalizing the displacements due to the iner al forces associated withΨ (𝑥),
𝑓I = �̄�(𝑥)Ψ (𝑥),

• we are going to demonstrate that the new shape func on is a be er approxima on
of the true mode shape
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Selec on of mode shapes

Given different shape func onsΨ and considering the true shape of free vibra onΨ, in
the former cases equilibrium is not respected by the structure itself.

To keep iner a induced deforma on propor onal toΨ we must consider the presence of
addi onal elas c constraints. This leads to the following considera ons

• the frequency of vibra on of a structure with addi onal constraints is higher than
the true natural frequency,

• the criterium to discriminate between different shape func ons is: be er shape
func ons give lower es mates of the natural frequency, the true natural frequency
being a lower bound of all es mates.
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Selec on of mode shapes 2

In general the selec on of trial shapes goes through two steps,

1. the analyst considers the flexibili es of different parts of the structure and the
presence of symmetries to devise an approximate shape,

2. the structure is loaded with constant loads directed as the assumed displacements,
the displacements are computed and used as the shape func on,

of course a li le prac ce helps a lot in the the choice of a proper pa ern of loading...
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Selec on of mode shapes 3

𝑝 = 𝑚(𝑥)

𝑃 = 𝑀

𝑝 = 𝑚(𝑥)

𝑝
=
𝑚
(𝑥
)

𝑝 = 𝑚(𝑥)
( )

( ) ( )

( )
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Refinement 𝑅

Choose a trial func onΨ( )(𝑥) and write

𝑣( ) = Ψ( )(𝑥)𝑍( ) sin𝜔𝑡

𝑉max =
1
2𝑍

( ) 𝐸𝐽Ψ( ) d𝑥

𝑇max =
1
2𝜔 𝑍( ) �̄�Ψ( ) d𝑥

our first es mate 𝑅 of 𝜔 is

𝜔 = ∫𝐸𝐽Ψ( ) d𝑥
∫ �̄�Ψ( ) d𝑥 .
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Refinement 𝑅

We try to give a be er es mate of 𝑉max compu ng the external work done by the iner al
forces,

𝑝( ) = 𝜔 �̄�(𝑥)𝑣( ) = 𝑍( )𝜔 Ψ( )(𝑥)
the deflec ons due to 𝑝( ) are

𝑣( ) = 𝜔 𝑣( )

𝜔 = 𝜔 Ψ( )𝑍( )

𝜔 = 𝜔 Ψ( )�̄�( ),

where we write �̄�( ) because we need to keep the unknown 𝜔 in evidence. The
maximum strain energy is

𝑉max =
1
2 𝑝( )𝑣( ) d𝑥 = 1

2𝜔 𝑍( )�̄�( ) �̄�(𝑥)Ψ( )Ψ( ) d𝑥

Equa ng to our previus es mate of 𝑇max we find the 𝑅 es mate

𝜔 = 𝑍( )

�̄�( )
∫ �̄�(𝑥)Ψ( )Ψ( ) d𝑥
∫ �̄�(𝑥)Ψ( )Ψ( ) d𝑥
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Refinement 𝑅

With li le addi onal effort it is possible to compute 𝑇max from 𝑣( ):

𝑇max =
1
2𝜔 �̄�(𝑥)𝑣( ) d𝑥 = 1

2𝜔 �̄�( ) �̄�(𝑥)Ψ( ) d𝑥

equa ng to our last approxima on for 𝑉max we have the 𝑅 approxima on to the
frequency of vibra on,

𝜔 = 𝑍( )

�̄�( )
∫ �̄�(𝑥)Ψ( )Ψ( ) d𝑥
∫ �̄�(𝑥)Ψ( )Ψ( ) d𝑥 .

Of course the procedure can be extended to compute be er and be er es mates of 𝜔
but usually the refinements are not extended beyond 𝑅 , because it would be
contradictory with the quick es mate nature of the Rayleigh’s Quo ent method and also
because 𝑅 es mates are usually very good ones.
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𝜔 = 𝑍( )

�̄�( )
∫ �̄�(𝑥)Ψ( )Ψ( ) d𝑥
∫ �̄�(𝑥)Ψ( )Ψ( ) d𝑥 .

Of course the procedure can be extended to compute be er and be er es mates of 𝜔
but usually the refinements are not extended beyond 𝑅 , because it would be
contradictory with the quick es mate nature of the Rayleigh’s Quo ent method

and also
because 𝑅 es mates are usually very good ones.
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Refinement 𝑅

With li le addi onal effort it is possible to compute 𝑇max from 𝑣( ):

𝑇max =
1
2𝜔 �̄�(𝑥)𝑣( ) d𝑥 = 1

2𝜔 �̄�( ) �̄�(𝑥)Ψ( ) d𝑥

equa ng to our last approxima on for 𝑉max we have the 𝑅 approxima on to the
frequency of vibra on,

𝜔 = 𝑍( )

�̄�( )
∫ �̄�(𝑥)Ψ( )Ψ( ) d𝑥
∫ �̄�(𝑥)Ψ( )Ψ( ) d𝑥 .

Of course the procedure can be extended to compute be er and be er es mates of 𝜔
but usually the refinements are not extended beyond 𝑅 , because it would be
contradictory with the quick es mate nature of the Rayleigh’s Quo ent method and also
because 𝑅 es mates are usually very good ones.
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Refinement Example
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