Multi Degrees of Freedom Systems MDOF

Giacomo Boffi

http://intranet.dica.polimi.it/people/boffi-giacomo

Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano

March 20, 2018

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

The Homogeneous Problem

Modal Analysis

Examples

Outline

Introductory Remarks

An Example

The Equation of Motion, a System of Linear Differential Equations

Matrices are Linear Operators

Properties of Structural Matrices

An example

The Homogeneous Problem

The Homogeneous Equation of Motion

Eigenvalues and Eigenvectors

Eigenvectors are Orthogonal

Modal Analysis

Eigenvectors are a base

EoM in Modal Coordinates

Initial Conditions

Examples

2 DOF System

Multi DoF Systems

Giacomo Boffi

Introductory

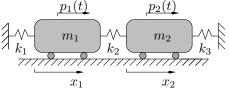
The Homogeneous Problem

Modal Analysis

Examples

Introductory Remarks

Consider an undamped system with two masses and two degrees of freedom.



Multi DoF Systems

Giacomo Boffi

Introductory

An Example

Motion

viatrices are Linear Operators Properties of

An example

The Homogeneous Problem Modal Analysis

Introductory Remarks

We can separate the two masses, single out the spring forces and, using the D'Alembert Principle, the inertial forces and, finally. write an equation of dynamic equilibrium for each mass.

$$k_{1}x_{1} - \underbrace{\frac{p_{1}}{m_{1}\ddot{x}_{1}}}_{m_{1}\ddot{x}_{1}} - k_{2}(x_{1} - x_{2})$$

$$m_{1}\ddot{x}_{1} + (k_{1} + k_{2})x_{1} - k_{2}x_{2} = p_{1}(t)$$

$$k_{2}(x_{2} - x_{1}) - \underbrace{\frac{p_{2}}{m_{2}\ddot{x}_{2}}}_{m_{2}\ddot{x}_{2}} - k_{3}x_{2}$$

$$m_{2}\ddot{x}_{2} - k_{2}x_{1} + (k_{2} + k_{3})x_{2} = p_{2}(t)$$

Multi DoF Systems

Giacomo Boffi

Introductory

An Example

The Equation of Motion

Matrices are Linear Operators

Properties of Structural Matrices

Structural Matrice An example

Modal Analysis

Examples

The

The equation of motion of a 2DOF system

With some little rearrangement we have a system of two linear differential equations in two variables, $x_1(t)$ and $x_2(t)$:

$$\begin{cases}
m_1\ddot{x}_1 + (k_1 + k_2)x_1 - k_2x_2 = p_1(t), \\
m_2\ddot{x}_2 - k_2x_1 + (k_2 + k_3)x_2 = p_2(t).
\end{cases}$$

Multi DoF Systems

Ciacomo Roffi

Introductory

An Example

The Equation of

Matrices are Linear Operators Properties of Structural Matrices

The Homogeneous Problem

Modal Analysis

Examples

The equation of motion of a 2DOF system

Introducing the loading vector p, the vector of inertial forces f_I and the vector of elastic forces f_S ,

$$\boldsymbol{p} = \left\{ egin{aligned} p_1(t) \\ p_2(t) \end{aligned}
ight\}, \quad \boldsymbol{f}_I = \left\{ egin{aligned} f_{I,1} \\ f_{I,2} \end{aligned}
ight\}, \quad \boldsymbol{f}_S = \left\{ egin{aligned} f_{S,1} \\ f_{S,2} \end{aligned}
ight\}$$

we can write a vectorial equation of equilibrium:

$$f_I + f_S = p(t).$$

Multi DoF Systems

Giacomo Boffi

Introductory Remarks An Example

The Equation of

Matrices are Linear Operators Properties of Structural Matrices

The Homogeneou Problem

Modal Analysis

$f_S = K x$

It is possible to write the linear relationship between f_S and the vector of displacements $\boldsymbol{x} = \left\{x_1 x_2\right\}^T$ in terms of a matrix product, introducing the so called *stiffness matrix* \boldsymbol{K} .

In our example it is

$$oldsymbol{f}_S = egin{bmatrix} k_1 + k_2 & -k_2 \ -k_2 & k_2 + k_3 \end{bmatrix} oldsymbol{x} = oldsymbol{K} oldsymbol{x}$$

The stiffness matrix K has a number of rows equal to the number of elastic forces, i.e., one force for each DOF and a number of columns equal to the number of the DOF.

The stiffness matrix K is hence a square matrix $K = K \pmod{\sum_{\mathsf{ndof} \times \mathsf{ndof}} K}$

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

An Example

The Equation of Motion

Properties of Structural Matrices

The Homogeneous

Modal Analysis

Examples

$oldsymbol{f}_I = oldsymbol{M} \, \ddot{oldsymbol{x}}$

Analogously, introducing the $\emph{mass matrix } M$ that, for our example, is

$$m{M} = egin{bmatrix} m_1 & 0 \ 0 & m_2 \end{bmatrix}$$

we can write

$$f_I = M \ddot{x}$$
.

Also the mass matrix ${\bf M}$ is a square matrix, with number of rows and columns equal to the number of ${\it DOF}$'s.

Multi DoF Systems

Ciacoma Roffi

Introductory

An Example
The Equation of

Matrices are Linea

Properties of Structural Matrices

The Homogeneous Problem

Modal Analysis

Examples

Matrix Equation

Finally it is possible to write the equation of motion in matrix format:

$$M\ddot{x} + Kx = p(t).$$

Of course it is possible to take into consideration also the damping forces, taking into account the velocity vector \dot{x} and introducing a damping matrix C too, so that we can eventually write

$$\mathbf{M} \ddot{\mathbf{x}} + \mathbf{C} \dot{\mathbf{x}} + \mathbf{K} \mathbf{x} = \mathbf{p}(t).$$

But today we are focused on undamped systems...

Multi DoF Systems

Giacomo Boffi

Remarks

An Example

The Equation of

Operators

Properties of Structural Matrices

The Homogeneous

Problem

Modal Analysis

Properties of $oldsymbol{K}$

▶ *K* is symmetrical.

The elastic force exerted on mass i due to an unit displacement of mass j, $f_{S,i}=k_{ij}$ is equal to the force k_{ji} exerted on mass j due to an unit diplacement of mass i, in virtue of Betti's theorem (also known as Maxwell-Betti reciprocal work theorem).

K is a positive definite matrix.
The strain energy V for a discrete system is

$$V = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{f}_S,$$

and expressing f_S in terms of K and x we have

$$V = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{K} \, \boldsymbol{x},$$

and because the strain energy is positive for $x \neq 0$ it follows that K is definite positive.

Multi DoF Systems

Giacomo Boffi

Introductory Remarks An Example

The Equation of Motion Matrices are Linea

Properties of Structural Matrices

An example

The Homogeneous

Modal Analysis

xamples

Properties of $oldsymbol{M}$

Restricting our discussion to systems whose degrees of freedom are the displacements of a set of discrete masses, we have that the mass matrix is a diagonal matrix, with all its diagonal elements greater than zero. Such a matrix is symmetrical and definite positive. Both the mass and the stiffness matrix are symmetrical and definite positive.

Note that the kinetic energy for a discrete system can be written

 $T = \frac{1}{2}\dot{\boldsymbol{x}}^T \boldsymbol{M} \, \dot{\boldsymbol{x}}.$

Multi DoF Systems

Giacomo Boffi

Introductory

An Example
The Equation of

Matrices are Lines

Properties of Structural Matrice

The Homogeneous Problem

Modal Analysis

Examples

Generalisation of previous results

The findings in the previous two slides can be generalised to the *structural matrices* of generic structural systems, with two main exceptions.

- 1. For a general structural system, in which not all DOFs are related to a mass, M could be *semi-definite* positive, that is for some particular displacement vector the kinetic energy is zero.
- 2. For a general structural system subjected to axial loads, due to the presence of *geometrical stiffness* it is possible that for some particular displacement vector the strain energy is zero and K is *semi-definite* positive.

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

An Example The Equation of Motion

Operators

Properties of

Structural Matrice
An example

The Homogeneous Problem

Modal Analysis

The problem

Graphical statement of the problem



The equations of motion

$$m_1\ddot{x}_1 + k_1x_1 + k_2(x_1 - x_2) = p_0 \sin \omega t,$$

 $m_2\ddot{x}_2 + k_2(x_2 - x_1) = 0.$

... but we prefer the matrix notation ...

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

An Example
The Equation of

Motion

Matrices are Linea
Operators

Properties of Structural Matrices

The Homogeneou

Modal Analysis

Examples

The steady state solution

We prefer the matrix notation because we can find the steady-state response of a *SDOF* system *exactly* as we found the s-s solution for a SDOF system.

Substituting $x(t) = \xi \sin \omega t$ in the equation of motion and simplifying $\sin \omega t$,

$$k\begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix} \boldsymbol{\xi} - m\omega^2 \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{\xi} = p_0 \begin{Bmatrix} 1 \\ 0 \end{Bmatrix}$$

dividing by k, with $\omega_0^2=k/m$, $\beta^2=\omega^2/\omega_0^2$ and $\Delta_{\rm st}=p_0/k$ the above equation can be written

$$\left(\begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix} - \beta^2 \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}\right) \boldsymbol{\xi} = \begin{bmatrix} 3 - 2\beta^2 & -1 \\ -1 & 1 - \beta^2 \end{bmatrix} \boldsymbol{\xi} = \Delta_{\mathsf{st}} \begin{Bmatrix} 1 \\ 0 \end{Bmatrix}.$$

Multi DoF Systems

Giacomo Bof

Introductory

Remarks
An Example

The Equation of Motion

Operators
Properties of

An example

The Homogeneous Problem

Modal Analysis

Examples

The steady state solution

The determinant of the matrix of coefficients is

$$\mathsf{Det} = 2\beta^4 - 5\beta^2 + 2$$

but we want to write the polynomial in β in terms of its roots

$${\sf Det} = 2 \times (\beta^2 - 1/2) \times (\beta^2 - 2).$$

Solving for $\xi/\Delta_{\rm st}$ in terms of the inverse of the coefficient matrix gives

$$\begin{split} \frac{\pmb{\xi}}{\Delta_{\text{st}}} &= \frac{1}{2(\beta^2 - \frac{1}{2})(\beta^2 - 2)} \begin{bmatrix} 1 - \beta^2 & 1\\ 1 & 3 - 2\beta^2 \end{bmatrix} \begin{Bmatrix} 1\\ 0 \end{Bmatrix} \\ &= \frac{1}{2(\beta^2 - \frac{1}{2})(\beta^2 - 2)} \begin{Bmatrix} 1 - \beta^2\\ 1 \end{Bmatrix}. \end{split}$$

Multi DoF Systems

Giacomo Boffi

Introductory

An Example

The Equation of

Matrices are Linea

roperties of

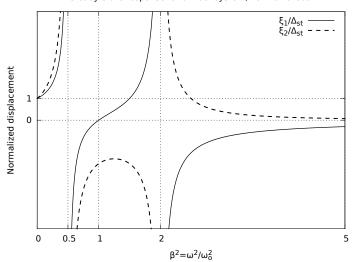
An example

The Homogeneous Problem

Modal Analysis

The solution, graphically

steady-state response for a 2 dof system, harmonic load



Multi DoF Systems

Giacomo Boffi

Introductory Remarks

An Example
The Equation of

Matrices are Linear Operators

An examp

The Homogeneous Problem

Modal Analysis

Evamples

Comment to the Steady State Solution

The steady state solution is

$$\boldsymbol{x}_{\text{s-s}} = \Delta_{\text{st}} \frac{1}{2(\beta^2 - \frac{1}{2})(\beta^2 - 2)} \, \left\{ \begin{matrix} 1 - \beta^2 \\ 1 \end{matrix} \right\} \, \sin \omega t.$$

As it's apparent in the previous slide, we have two different values of the excitation frequency for which the *dynamic amplification factor* goes to infinity.

For an undamped SDOF system, we had a single frequency of excitation that excites a *resonant response*, now for a *two* degrees of freedom system we have *two* different excitation frequencies that excite a resonant response.

We know how to compute a particular integral for a MDOF system (at least for a harmonic loading), what do we miss to be able to determine the integral of motion?

Multi DoF Systems

Ciacomo Roffi

ntroductory

Remarks

An Example
The Equation of
Motion

Properties of Structural Matric

The Homogeneous

Modal Analysis

Examples

Homogeneous equation of motion

To understand the behaviour of a *MDOF* system, we have to study the homogeneous solution.

Let's start writing the homogeneous equation of motion,

$$M\ddot{x} + Kx = 0.$$

The solution, in analogy with the SDOF case, can be written in terms of a harmonic function of unknown frequency and, using the concept of separation of variables, of a constant vector, the so called shape vector ψ :

$$x(t) = \psi(A\sin\omega t + B\cos\omega t).$$

Substituting in the equation of motion, we have

$$(K - \omega^2 M) \psi(A \sin \omega t + B \cos \omega t) = 0$$

Multi DoF Systems

Giacomo Boffi

Introductory

The Homogeneous Problem

The Homogeneous Equation of Motion

Eigenvalues and Eigenvectors Eigenvectors are Orthogonal

Modal Analysis

Eigenvalues

The previous equation must hold for every value of t, so it can be simplified removing the time dependency:

$$(\boldsymbol{K} - \omega^2 \boldsymbol{M}) \, \boldsymbol{\psi} = \boldsymbol{0}.$$

This is a homogeneous linear equation, with unknowns ψ_i and the coefficients that depends on the parameter ω^2 .

Speaking of homogeneous systems, we know that

- \blacktriangleright there is always a trivial solution, $\psi = 0$, and
- ▶ non-trivial solutions are possible if the determinant of the matrix of coefficients is equal to zero.

$$\det\left(\boldsymbol{K} - \omega^2 \boldsymbol{M}\right) = 0$$

The eigenvalues of the MDOF system are the values of ω^2 for which the above equation (the equation of frequencies) is verified or, in other words, the frequencies of vibration associated with the shapes for which

$$\mathbf{K}\boldsymbol{\psi}\sin\omega t = \omega^2 \mathbf{M}\boldsymbol{\psi}\sin\omega t.$$

Multi DoF Systems

Giacomo Boffi

Problem

Modal Analysis

Eigenvalues, cont.

For a system with N degrees of freedom the expansion of $\det (\mathbf{K} - \omega^2 \mathbf{M})$ is an algebraic polynomial of degree N in ω^2 . A polynomial of degree N has exactly N roots, either real or complex conjugate.

In Dynamics of Structures those roots ω_i^2 , $i=1,\ldots,N$ are all real because the structural matrices are symmetric matrices. Moreover, if both K and M are positive definite matrices (a condition that is always satisfied by stable structural systems) all the roots, all the eigenvalues, are strictly positive:

$$\omega_i^2 \ge 0, \qquad \text{for } i = 1, \dots, N.$$

Multi DoF

Giacomo Boffi

Problem

Modal Analysis

Eigenvectors

Substituting one of the N roots ω_i^2 in the characteristic equation,

$$(\boldsymbol{K} - \omega_i^2 \boldsymbol{M}) \, \boldsymbol{\psi}_i = \mathbf{0}$$

the resulting system of N-1 linearly independent equations can be solved (except for a scale factor) for ψ_i , the eigenvector corresponding to the eigenvalue ω_i^2 .

Multi DoF

Giacomo Boffi

Homogene Problem

Eigenvalues and Eigenvectors

Modal Analysis

Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the value of one of the components and compute the values of all the other N-1 components using the N-1 linearly indipendent equations.

It is common to impose to each eigenvector a *normalisation with* respect to the mass matrix, so that

$$\boldsymbol{\psi}_i^T \boldsymbol{M} \, \boldsymbol{\psi}_i = m$$

where m represents the unit mass.

Please consider that, substituting **different eigenvalues** in the equation of free vibrations, you have **different linear systems**, leading to **different eigenvectors**.

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

The Homogeneous

Problem
The Homogeneous

Eigenvalues and

Eigenvectors are

Modal Analysis

F........

Initial Conditions

The most general expression (the general integral) for the displacement of a homogeneous system is

$$x(t) = \sum_{i=1}^{N} \psi_i(A_i \sin \omega_i t + B_i \cos \omega_i t).$$

In the general integral there are 2N unknown constants of integration, that must be determined in terms of the initial conditions.

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

The Homogeneous Problem

The Homogeneous Equation of Motion

Eigenvalues and Eigenvectors

Orthogonal

Modal Analysis

Examples

Initial Conditions

Usually the initial conditions are expressed in terms of initial displacements and initial velocities x_0 and \dot{x}_0 , so we start deriving the expression of displacement with respect to time to obtain

$$\dot{\boldsymbol{x}}(t) = \sum_{i=1}^{N} \boldsymbol{\psi}_{i} \omega_{i} (A_{i} \cos \omega_{i} t - B_{i} \sin \omega_{i} t)$$

and evaluating the displacement and velocity for t=0 it is

$$m{x}(0) = \sum_{i=1}^{N} m{\psi}_i B_i = m{x}_0, \qquad \dot{m{x}}(0) = \sum_{i=1}^{N} m{\psi}_i \omega_i A_i = \dot{m{x}}_0.$$

The above equations are vector equations, each one corresponding to a system of N equations, so we can compute the 2N constants of integration solving the 2N equations

$$\sum_{i=1}^{N} \psi_{ji} B_i = x_{0,j}, \qquad \sum_{i=1}^{N} \psi_{ji} \omega_i A_i = \dot{x}_{0,j}, \qquad j = 1, \dots, N.$$

Multi DoF Systems

Giacomo Boffi

Introductory

The Homogeneous Problem

The Homogeneous

Eigenvalues and

Eigenvectors are

Modal Analysis

Orthogonality - 1

Take into consideration two distinct eigenvalues, ω_r^2 and ω_s^2 , and write the characteristic equation for each eigenvalue:

$$oldsymbol{K} oldsymbol{\psi}_r = \omega_r^2 oldsymbol{M} oldsymbol{\psi}_r \ oldsymbol{K} oldsymbol{\psi}_s = \omega_s^2 oldsymbol{M} oldsymbol{\psi}_s$$

premultiply each equation member by the transpose of the *other* eigenvector

$$oldsymbol{\psi}_s^T oldsymbol{K} \, oldsymbol{\psi}_r = \omega_r^2 oldsymbol{\psi}_s^T oldsymbol{M} \, oldsymbol{\psi}_r$$
 $oldsymbol{\psi}_r^T oldsymbol{K} \, oldsymbol{\psi}_s = \omega_s^2 oldsymbol{\psi}_r^T oldsymbol{M} \, oldsymbol{\psi}_s$

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

The Homogeneous Problem

Equation of Motion

Eigenvectors are

Modal Analysis

. .

Orthogonality - 2

The term $oldsymbol{\psi}_s^T oldsymbol{K} oldsymbol{\psi}_r$ is a scalar, hence

$$oldsymbol{\psi}_s^T oldsymbol{K} \, oldsymbol{\psi}_r = \left(oldsymbol{\psi}_s^T oldsymbol{K} \, oldsymbol{\psi}_r
ight)^T = oldsymbol{\psi}_r^T oldsymbol{K}^T \, oldsymbol{\psi}_s$$

but $oldsymbol{K}$ is symmetrical, $oldsymbol{K}^T = oldsymbol{K}$ and we have

$$\boldsymbol{\psi}_{s}^{T}\boldsymbol{K}\,\boldsymbol{\psi}_{r}=\boldsymbol{\psi}_{r}^{T}\boldsymbol{K}\,\boldsymbol{\psi}_{s}.$$

By a similar derivation

$$\boldsymbol{\psi}_s^T \boldsymbol{M} \, \boldsymbol{\psi}_r = \boldsymbol{\psi}_r^T \boldsymbol{M} \, \boldsymbol{\psi}_s.$$

Multi DoF Systems

Ciacoma Roffi

Introductory Remarks

Homogeneous Problem

The Homogeneous Equation of Motion Eigenvalues and

Eigenvectors are

Modal Analysis

xamples

Orthogonality - 3

Substituting our last identities in the previous equations, we have

$$oldsymbol{\psi}_r^T oldsymbol{K} \, oldsymbol{\psi}_s = \omega_r^2 oldsymbol{\psi}_r^T oldsymbol{M} \, oldsymbol{\psi}_s = \omega_s^2 oldsymbol{\psi}_r^T oldsymbol{M} \, oldsymbol{\psi}_s$$

subtracting member by member we find that

$$(\omega_r^2 - \omega_s^2) \ \boldsymbol{\psi}_r^T \boldsymbol{M} \ \boldsymbol{\psi}_s = 0$$

We started with the hypothesis that $\omega_r^2 \neq \omega_s^2$, so for every $r \neq s$ we have that the corresponding eigenvectors are *orthogonal with respect* to the mass matrix

$$\boldsymbol{\psi}_r^T \boldsymbol{M} \, \boldsymbol{\psi}_s = 0, \qquad \text{for } r \neq s.$$

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

The Homogeneous Problem

The Homogeneous Equation of Motion Eigenvalues and

Eigenvectors are

Modal Analysis

Orthogonality - 4

Multi DoF

Giacomo Boffi

Problem

Modal Analysi

By definition

matrix:

$$M_i = \boldsymbol{\psi}_i^T \boldsymbol{M} \, \boldsymbol{\psi}_i$$

 $\boldsymbol{\psi}_{r}^{T}\boldsymbol{K}\boldsymbol{\psi}_{r}=\boldsymbol{\omega}_{r}^{2}\boldsymbol{\psi}_{r}^{T}\boldsymbol{M}\boldsymbol{\psi}_{r}=0, \text{ for } r\neq s.$

The eigenvectors are orthogonal also with respect to the stiffness

and consequently

$$\boldsymbol{\psi}_i^T \boldsymbol{K} \, \boldsymbol{\psi}_i = \omega_i^2 M_i.$$

 M_i is the modal mass associated with mode no. i while $K_i \equiv \omega_i^2 M_i$ is the respective modal stiffness.

Eigenvectors are a base

The eigenvectors are linearly independent, so for every vector x we can write

$$oldsymbol{x} = \sum_{j=1}^{N} oldsymbol{\psi}_j q_j.$$

The coefficients are readily given by premultiplication of x by $\psi_i^T M$, because

$$oldsymbol{\psi}_i^T oldsymbol{M} oldsymbol{x} = \sum_{j=1}^N oldsymbol{\psi}_i^T oldsymbol{M} oldsymbol{\psi}_j q_j = oldsymbol{\psi}_i^T oldsymbol{M} oldsymbol{\psi}_i q_i = M_i q_i$$

in virtue of the ortogonality of the eigenvectors with respect to the mass matrix, and the above relationship gives

$$q_j = \frac{\boldsymbol{\psi}_j^T \boldsymbol{M} \, \boldsymbol{x}}{M_j}.$$

Multi DoF

Examples

Eigenvectors are a base

Generalising our results for the displacement vector to the acceleration vector and expliciting the time dependency, it is

$$m{x}(t) = \sum_{j=1}^N m{\psi}_j q_j(t), \qquad \qquad \ddot{m{x}}(t) = \sum_{j=1}^N m{\psi}_j \ddot{q}_j(t),
onumber$$

$$x_i(t) = \sum_{j=1}^{N} \Psi_{ij} q_j(t),$$
 $\ddot{x}_i(t) = \sum_{j=1}^{N} \psi_{ij} \ddot{q}_j(t).$

Introducing q(t), the vector of modal coordinates and Ψ , the eigenvector matrix, whose columns are the eigenvectors, we can write

$$\boldsymbol{x}(t) = \boldsymbol{\Psi} \, \boldsymbol{q}(t), \qquad \qquad \ddot{\boldsymbol{x}}(t) = \boldsymbol{\Psi} \, \ddot{\boldsymbol{q}}(t).$$

Multi DoF

Giacomo Boffi

EoM in Modal Coordinates...

Substituting the last two equations in the equation of motion,

$$M \Psi \ddot{q} + K \Psi q = p(t)$$

premultiplying by $\mathbf{\Psi}^T$

$$\boldsymbol{\Psi}^{T}\boldsymbol{M}\,\boldsymbol{\Psi}\,\ddot{\boldsymbol{q}} + \boldsymbol{\Psi}^{T}\boldsymbol{K}\,\boldsymbol{\Psi}\,\boldsymbol{q} = \boldsymbol{\Psi}^{T}\boldsymbol{p}(t)$$

introducing the so called *starred matrices*, with ${m p}^{\star}(t)={m \Psi}^T{m p}(t)$, we can finally write

$$M^{\star}\ddot{q} + K^{\star}q = p^{\star}(t)$$

The vector equation above corresponds to the set of scalar equations

$$p_i^{\star} = \sum m_{ij}^{\star} \ddot{q}_j + \sum k_{ij}^{\star} q_j, \qquad i = 1, \dots, N.$$

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

The Homogeneous

Modal Analysis

Eigenvectors are a ba

Coordinates

Evamples

\dots are N independent equations!

We must examine the structure of the starred symbols.

The generic element, with indexes *i* and *j*, of the *starred*

The generic element, with indexes i and j, of the *starred* matrices can be expressed in terms of single eigenvectors,

$$m_{ij}^{\star} = \psi_i^T M \psi_j = \delta_{ij} M_i, \ k_{ij}^{\star} = \psi_i^T K \psi_j = \omega_i^2 \delta_{ij} M_i.$$

where δ_{ij} is the Kroneker symbol,

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Substituting in the equation of motion, with $p_i^\star = \psi_i^T p(t)$ we have a set of uncoupled equations

$$M_i \ddot{q}_i + \omega_i^2 M_i q_i = p_i^{\star}(t), \qquad i = 1, \dots, N$$

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

The Homogeneous Problem

Wodal Analysis

Eigenvectors are a base

EoM in Modal Coordinates

Examples

Initial Conditions Revisited

The initial displacements can be written in modal coordinates,

$$\boldsymbol{x}_0 = \boldsymbol{\Psi} \, \boldsymbol{q}_0$$

and premultiplying both members by $\mathbf{\Psi}^T \mathbf{M}$ we have the following relationship:

$$\mathbf{\Psi}^T \mathbf{M} \, \mathbf{x}_0 = \mathbf{\Psi}^T \mathbf{M} \, \mathbf{\Psi} \, \mathbf{q}_0 = \mathbf{M}^* \mathbf{q}_0.$$

Premultiplying by the inverse of M^{\star} and taking into account that M^{\star} is diagonal,

$$oldsymbol{q}_0 = (oldsymbol{M}^\star)^{-1} \, oldsymbol{\Psi}^T oldsymbol{M} \, oldsymbol{x}_0 \quad \Rightarrow \quad q_{i0} = rac{oldsymbol{\psi}_i^T oldsymbol{M} \, oldsymbol{x}_0}{M_i}$$

and, analogously,

$$\dot{q}_{i0} = rac{{oldsymbol{\psi}_i}^T oldsymbol{M} \, \dot{oldsymbol{x}}_0}{M_i}$$

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

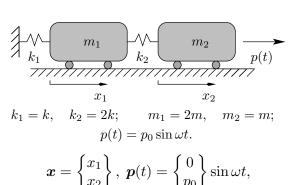
The Homogeneous Problem

Modal Analysis

Eigenvectors are a base EoM in Modal

Initial Conditions

2 DOF System



$$\begin{bmatrix} x_2 \end{bmatrix}$$
, $\mathbf{K} = k \begin{bmatrix} 3 & -2 \\ -2 & 2 \end{bmatrix}$.

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

The Homogeneous

Aodal Analysis

Examples

2 DOF System

Equation of frequencies

The equation of frequencies is

$$\|\mathbf{K} - \omega^2 \mathbf{M}\| = \begin{pmatrix} 3k - 2\omega^2 m & -2k \\ -2k & 2k - \omega^2 m \end{pmatrix} = 0.$$

Developing the determinant

$$(2m^2)\omega^4 - (7mk)\omega^2 + (2k^2)\omega^0 = 0$$

Solving the algebraic equation in ω^2

$$\omega_1^2 = \frac{k}{m} \frac{7 - \sqrt{33}}{4}$$

$$\omega_2^2 = \frac{k}{m} \frac{7 + \sqrt{33}}{4}$$

$$\omega_1^2 = 0.31386 \frac{k}{m}$$

$$\omega_2^2 = 3.18614 \frac{k}{m}$$

Multi DoF Systems

Giacomo Boff

Introductory Remarks

The Homogeneous Problem

Modal Analysis

Examples

2 DOF System

Eigenvectors

Substituting ω_1^2 for ω^2 in the first of the characteristic equations gives the ratio between the components of the first eigenvector,

$$k(3-2\times0.31386)\psi_{11}-2k\psi_{21}=0$$

while substituting ω_2^2 gives

$$k(3-2\times 3.18614)\psi_{12}-2k\psi_{22}=0.$$

Solving with the arbitrary assignment $\psi_{21}=\psi_{22}=1$ gives the unnormalized eigenvectors,

$$\psi_1 = \begin{cases} +0.84307 \\ +1.00000 \end{cases}, \quad \psi_2 = \begin{cases} -0.59307 \\ +1.00000 \end{cases}.$$

Multi DoF Systems

Giacomo Boffi

Introductory

The Homogeneous

Modal Analysis

Examples

2 DOF System

Normalization

We compute first M_1 and M_2 ,

$$M_{1} = \psi_{1}^{T} M \psi_{1}$$

$$= \left\{0.84307, 1\right\} \begin{bmatrix} 2m & 0 \\ 0 & m \end{bmatrix} \begin{Bmatrix} 0.84307 \\ 1 \end{Bmatrix}$$

$$= \left\{1.68614m, m\right\} \begin{Bmatrix} 0.84307 \\ 1 \end{Bmatrix} = 2.42153m$$

$$M_2 = 1.70346m$$

the adimensional normalisation factors are

$$\alpha_1 = \sqrt{2.42153}, \qquad \alpha_2 = \sqrt{1.70346}.$$

Applying the normalisation factors to the respective unnormalised eigenvectors and collecting them in a matrix, we have the matrix of normalized eigenvectors

$$\Psi = \begin{bmatrix} +0.54177 & -0.45440 \\ +0.64262 & +0.76618 \end{bmatrix}$$

Multi DoF Systems

Giacomo Boffi

Remarks

Examples

2 DOF System

Modal Loadings

The modal loading is

$$\begin{aligned} \boldsymbol{p}^{\star}(t) &= \boldsymbol{\Psi}^{T} \, \boldsymbol{p}(t) \\ &= p_{0} \, \begin{bmatrix} +0.54177 & +0.64262 \\ -0.45440 & +0.76618 \end{bmatrix} \, \begin{Bmatrix} 0 \\ 1 \end{Bmatrix} \sin \omega t \\ &= p_{0} \, \begin{Bmatrix} +0.64262 \\ +0.76618 \end{Bmatrix} \sin \omega t \end{aligned}$$

Multi DoF

Giacomo Boffi

Problem

Examples

2 DOF System

Modal EoM

Substituting its modal expansion for x into the equation of motion and premultiplying by $oldsymbol{\Psi}^T$ we have the uncoupled modal equation of motion

$$\begin{cases} m\ddot{q}_1 + 0.31386k \, q_1 = +0.64262 \, p_0 \sin \omega t \\ m\ddot{q}_2 + 3.18614k \, q_2 = +0.76618 \, p_0 \sin \omega t \end{cases}$$

Note that all the terms are dimensionally correct. Dividing by mboth equations, we have

$$\begin{cases} \ddot{q}_1 + \omega_1^2 q_1 = +0.64262 \, \frac{p_0}{m} \sin \omega t \\ \ddot{q}_2 + \omega_2^2 q_2 = +0.76618 \, \frac{p_0}{m} \sin \omega t \end{cases}$$

Multi DoF Systems

Giacomo Boffi

Homogeneous Problem

Examples

2 DOF System

Particular Integral

We set

$$\xi_1 = C_1 \sin \omega t, \quad \ddot{\xi} = -\omega^2 C_1 \sin \omega t$$

and substitute in the first modal EoM:

$$C_1 \left(\omega_1^2 - \omega^2\right) \sin \omega t = \frac{p_1^*}{m} \sin \omega t$$

solving for C_1

$$C_1 = \frac{p_1^{\star}}{m} \frac{1}{\omega_1^2 - \omega^2}$$

with $\omega_1^2 = K_1/m \implies m = K_1/\omega_1^2$:

$$C_1 = \frac{p_1^{\star}}{K_1} \frac{\omega_1^2}{\omega_1^2 - \omega^2} = \Delta_{\rm st}^{(1)} \frac{1}{1 - \beta_1^2} \quad \text{with } \Delta_{\rm st}^{(1)} = \frac{p_1^{\star}}{K_1} = 2.047 \frac{p_0}{k} \text{ and } \beta_1 = \frac{\omega}{\omega_1}$$

$$C_2 = \Delta_{\rm st}^{(2)} \frac{1}{1-\beta_2^2} \quad {\rm with} \,\, \Delta_{\rm st}^{(2)} = \frac{p_2^\star}{K_2} = 0.2404 \frac{p_0}{k} \,\, {\rm and} \,\, \beta_2 = \frac{\omega}{\omega_2}$$

Multi DoF Systems

Giacomo Boffi

Introductory Remarks

2 DOF System

Integrals

The integrals, for our loading, are thus

$$\begin{cases} q_1(t) = A_1 \sin \omega_1 t + B_1 \cos \omega_1 t + \Delta_{\mathsf{st}}^{(1)} \frac{\sin \omega t}{1 - \beta_1^2} \\ q_2(t) = A_2 \sin \omega_2 t + B_2 \cos \omega_2 t + \Delta_{\mathsf{st}}^{(2)} \frac{\sin \omega t}{1 - \beta_2^2} \end{cases}$$

for a system initially at rest

$$\begin{cases} q_1(t) = \Delta_{\mathsf{st}}^{(1)} \frac{1}{1 - \beta_1^2} \left(\sin \omega t - \beta_1 \sin \omega_1 t \right) \\ q_2(t) = \Delta_{\mathsf{st}}^{(2)} \frac{1}{1 - \beta_2^2} \left(\sin \omega t - \beta_2 \sin \omega_2 t \right) \end{cases}$$

we are interested in structural degrees of freedom, too... disregarding transient

$$\begin{cases} x_1(t) = \left(\psi_{11} \frac{\Delta_{\mathsf{st}}^{(1)}}{1 - \beta_1^2} + \psi_{12} \frac{\Delta_{\mathsf{st}}^{(2)}}{1 - \beta_2^2}\right) \sin \omega t = \left(\frac{1.10926}{1 - \beta_1^2} - \frac{0.109271}{1 - \beta_2^2}\right) \frac{p_0}{k} \sin \omega t \\ x_2(t) = \left(\psi_{21} \frac{\Delta_{\mathsf{st}}^{(1)}}{1 - \beta_1^2} + \psi_{22} \frac{\Delta_{\mathsf{st}}^{(2)}}{1 - \beta_2^2}\right) \sin \omega t = \left(\frac{1.31575}{1 - \beta_1^2} + \frac{0.184245}{1 - \beta_2^2}\right) \frac{p_0}{k} \sin \omega t \end{cases}$$

Multi DoF

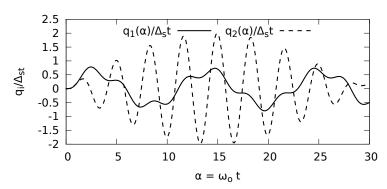
Introductory

Examples

2 DOF Systen

The response in modal coordinates

To have a feeling of the response in modal coordinates, let's say that the frequency of the load is $\omega=2\omega_0$, hence $\beta_1=\frac{2.0}{\sqrt{0.31386}}=6.37226$ and $\beta_2 = \frac{2.0}{\sqrt{3.18614}} = 0.62771.$



In the graph above, the responses are plotted against an adimensional time coordinate α with $\alpha = \omega_0 t$, while the ordinates are adimensionalised with respect to $\Delta_{\mathsf{st}} = \frac{p_0}{k}$

Multi DoF Systems

Giacomo Boffi

Introductory

Examples

2 DOF Syster

The response in structural coordinates

Systems Giacomo Boffi

Multi DoF

Introductory Remarks

The Homogeneous Problem

Modal Analysis

2 DOF System

Using the same normalisation factors, here are the response functions in terms of $x_1 = \psi_{11}q_1 + \psi_{12}q_2$ and $x_2 = \psi_{21}q_1 + \psi_{22}q_2$:

