Multi Degrees of Freedom Systems
MDOF

Giacomo Boffi

http://intranet.dica.polimi.it/people/boffi-giacomo

Dipartimento di Ingegneria Civile Ambientale e Territoriale
Politecnico di Milano

March 20, 2018
Outline

Introductory Remarks
 An Example
 The Equation of Motion, a System of Linear Differential Equations
 Matrices are Linear Operators
 Properties of Structural Matrices
 An example

The Homogeneous Problem
 The Homogeneous Equation of Motion
 Eigenvalues and Eigenvectors
 Eigenvectors are Orthogonal

Modal Analysis
 Eigenvectors are a base
 EoM in Modal Coordinates
 Initial Conditions

Examples
 2 DOF System
Introductory Remarks

Consider an undamped system with two masses and two degrees of freedom.

\[p_1(t) \quad p_2(t) \]

\[m_1 \quad m_2 \]

\[k_1 \quad k_2 \quad k_3 \]

\[x_1 \quad x_2 \]
Introductory Remarks

We can separate the two masses, single out the spring forces and, using the D’Alembert Principle, the inertial forces and, finally, write an equation of dynamic equilibrium for each mass.

\[m_1 \ddot{x}_1 + (k_1 + k_2) x_1 - k_2 x_2 = p_1(t) \]

\[m_2 \ddot{x}_2 - k_2 x_1 + (k_2 + k_3) x_2 = p_2(t) \]
The equation of motion of a 2DOF system

With some little rearrangement we have a system of two linear differential equations in two variables, $x_1(t)$ and $x_2(t)$:

\[
\begin{align*}
 m_1 \ddot{x}_1 + (k_1 + k_2)x_1 - k_2x_2 &= p_1(t), \\
 m_2 \ddot{x}_2 - k_2x_1 + (k_2 + k_3)x_2 &= p_2(t).
\end{align*}
\]
The equation of motion of a 2DOF system

Introducing the loading vector p, the vector of inertial forces f_I and the vector of elastic forces f_S,

$$p = \begin{pmatrix} p_1(t) \\ p_2(t) \end{pmatrix}, \quad f_I = \begin{pmatrix} f_{I,1} \\ f_{I,2} \end{pmatrix}, \quad f_S = \begin{pmatrix} f_{S,1} \\ f_{S,2} \end{pmatrix}$$

we can write a vectorial equation of equilibrium:

$$f_I + f_S = p(t).$$
\[f_S = K x \]

It is possible to write the linear relationship between \(f_S \) and the vector of displacements \(x = \{x_1 \, x_2\}^T \) in terms of a matrix product, introducing the so called \textit{stiffness matrix} \(K \).
\[f_S = K \ x \]

It is possible to write the linear relationship between \(f_S \) and the vector of displacements \(x = \{x_1 \ x_2\}^T \) in terms of a matrix product, introducing the so called *stiffness matrix* \(K \).

In our example it is

\[
\begin{bmatrix}
 k_1 + k_2 & -k_2 \\
 -k_2 & k_2 + k_3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= K \ x
\]
\[f_S = K x \]

It is possible to write the linear relationship between \(f_S \) and the vector of displacements \(x = \{x_1 x_2\}^T \) in terms of a matrix product, introducing the so called \textit{stiffness matrix} \(K \).

In our example it is

\[
\begin{pmatrix}
k_1 + k_2 & -k_2 \\-k_2 & k_2 + k_3
\end{pmatrix}
x = K x
\]

The stiffness matrix \(K \) has a number of rows equal to the number of elastic forces, i.e., one force for each \textit{DOF} and a number of columns equal to the number of the \textit{DOF}.

The stiffness matrix \(K \) is hence a \textit{square matrix} \(K_{\text{ndof} \times \text{ndof}} \).
Analogously, introducing the mass matrix M that, for our example, is

\[M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \]

we can write

\[f_I = M \ddot{x}. \]

Also the mass matrix M is a square matrix, with number of rows and columns equal to the number of DOF's.
Finally it is possible to write the equation of motion in matrix format:

\[M \ddot{x} + K x = p(t). \]
Finally it is possible to write the equation of motion in matrix format:

\[M \ddot{x} + K x = p(t). \]

Of course it is possible to take into consideration also the damping forces, taking into account the velocity vector \(\dot{x} \) and introducing a damping matrix \(C \) too, so that we can eventually write

\[M \ddot{x} + C \dot{x} + K x = p(t). \]
Matrix Equation

Finally it is possible to write the equation of motion in matrix format:

\[M \ddot{x} + K x = p(t). \]

Of course it is possible to take into consideration also the damping forces, taking into account the velocity vector \(\dot{x} \) and introducing a damping matrix \(C \) too, so that we can eventually write

\[M \ddot{x} + C \dot{x} + K x = p(t). \]

But today we are focused on undamped systems...
Properties of K

- K is symmetrical.

The elastic force exerted on mass i due to an unit displacement of mass j, $f_{S,i} = k_{ij}$ is equal to the force k_{ji} exerted on mass j due to an unit displacement of mass i, in virtue of Betti’s theorem (also known as Maxwell-Betti reciprocal work theorem).
Properties of \(K \)

- \(K \) is symmetrical.
 The elastic force exerted on mass \(i \) due to an unit displacement of mass \(j \), \(f_{S,i} = k_{ij} \) is equal to the force \(k_{ji} \) exerted on mass \(j \) due to an unit displacement of mass \(i \), in virtue of Betti's theorem (also known as Maxwell-Betti reciprocal work theorem).

- \(K \) is a positive definite matrix.
 The strain energy \(V \) for a discrete system is
 \[
 V = \frac{1}{2} x^T f_S,
 \]
 and expressing \(f_S \) in terms of \(K \) and \(x \) we have
 \[
 V = \frac{1}{2} x^T K x,
 \]
 and because the strain energy is positive for \(x \neq 0 \) it follows that \(K \) is definite positive.
Restricting our discussion to systems whose degrees of freedom are the displacements of a set of discrete masses, we have that the mass matrix is a diagonal matrix, with all its diagonal elements greater than zero. Such a matrix is symmetrical and definite positive. Both the mass and the stiffness matrix are symmetrical and definite positive.
Restricting our discussion to systems whose degrees of freedom are the displacements of a set of discrete masses, we have that the mass matrix is a diagonal matrix, with all its diagonal elements greater than zero. Such a matrix is symmetrical and definite positive. Both the mass and the stiffness matrix are symmetrical and definite positive.

\[T = \frac{1}{2} \dot{x}^T M \dot{x}. \]

Note that the kinetic energy for a discrete system can be written
Generalisation of previous results

The findings in the previous two slides can be generalised to the *structural matrices* of generic structural systems, with two main exceptions.
Generalisation of previous results

The findings in the previous two slides can be generalised to the \textit{structural matrices} of generic structural systems, with two main exceptions.

1. For a general structural system, in which not all DOFs are related to a mass, M could be \textit{semi-definite} positive, that is for some particular displacement vector the kinetic energy is zero.
The findings in the previous two slides can be generalised to the \textit{structural matrices} of generic structural systems, with two main exceptions.

1. For a general structural system, in which not all DOFs are related to a mass, M could be \textit{semi-definite} positive, that is for some particular displacement vector the kinetic energy is zero.

2. For a general structural system subjected to axial loads, due to the presence of \textit{geometrical stiffness} it is possible that for some particular displacement vector the strain energy is zero and K is \textit{semi-definite} positive.
The problem

Graphical statement of the problem

\[p(t) = p_0 \sin \omega t. \]

\[k_1 = 2k, \quad k_2 = k; \quad m_1 = 2m, \quad m_2 = m; \]

\[p(t) = p_0 \sin \omega t. \]
The problem

Graphical statement of the problem

\[k_1 = 2k, \quad k_2 = k; \quad m_1 = 2m, \quad m_2 = m; \]
\[p(t) = p_0 \sin \omega t. \]

The equations of motion

\[m_1 \ddot{x}_1 + k_1 x_1 + k_2 (x_1 - x_2) = p_0 \sin \omega t, \]
\[m_2 \ddot{x}_2 + k_2 (x_2 - x_1) = 0. \]
The problem

Graphical statement of the problem

\[k_1 = 2k, \quad k_2 = k; \quad m_1 = 2m, \quad m_2 = m; \]

\[p(t) = p_0 \sin \omega t. \]

The equations of motion

\[m_1 \ddot{x}_1 + k_1 x_1 + k_2 (x_1 - x_2) = p_0 \sin \omega t, \]
\[m_2 \ddot{x}_2 + k_2 (x_2 - x_1) = 0. \]

... but we prefer the matrix notation ...
The steady state solution

We prefer the matrix notation because we can find the steady-state response of a SDOF system exactly as we found the s-s solution for a SDOF system.

Substituting \(x(t) = \xi \sin \omega t \) in the equation of motion and simplifying \(\sin \omega t \),

\[
k \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix} \xi - m\omega^2 \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \xi = p_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]
The steady state solution

We prefer the matrix notation because we can find the steady-state response of a SDOF system exactly as we found the s-s solution for a SDOF system.

Substituting $x(t) = \xi \sin \omega t$ in the equation of motion and simplifying $\sin \omega t$,

$$
k \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix} \xi - m\omega^2 \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \xi = p_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$

dividing by k, with $\omega_0^2 = k/m$, $\beta^2 = \omega^2/\omega_0^2$ and $\Delta_{st} = p_0/k$ the above equation can be written
The steady state solution

We prefer the matrix notation because we can find the steady-state response of a SDOF system exactly as we found the s-s solution for a SDOF system.

Substituting \(x(t) = \xi \sin \omega t \) in the equation of motion and simplifying \(\sin \omega t \),

\[
k \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix} \xi - m\omega^2 \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \xi = p_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

dividing by \(k \), with \(\omega_0^2 = k/m \), \(\beta^2 = \omega^2/\omega_0^2 \) and \(\Delta_{st} = p_0/k \) the above equation can be written

\[
\left(\begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix} - \beta^2 \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \right) \xi = \begin{bmatrix} 3 - 2\beta^2 & -1 \\ -1 & 1 - \beta^2 \end{bmatrix} \xi = \Delta_{st} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
\]
The steady state solution

The determinant of the matrix of coefficients is

\[\text{Det} = 2\beta^4 - 5\beta^2 + 2 \]

but we want to write the polynomial in \(\beta \) in terms of its roots

\[\text{Det} = 2 \times (\beta^2 - 1/2) \times (\beta^2 - 2). \]

Solving for \(\xi/\Delta_{st} \) in terms of the inverse of the coefficient matrix gives
The steady state solution

The determinant of the matrix of coefficients is

\[
\text{Det} = 2\beta^4 - 5\beta^2 + 2
\]

but we want to write the polynomial in \(\beta \) in terms of its roots

\[
\text{Det} = 2 \times (\beta^2 - 1/2) \times (\beta^2 - 2).
\]

Solving for \(\xi/\Delta_{st} \) in terms of the inverse of the coefficient matrix gives

\[
\frac{\xi}{\Delta_{st}} = \frac{1}{2(\beta^2 - \frac{1}{2})(\beta^2 - 2)} \left[\begin{array}{cc} 1 - \beta^2 & 1 \\ 1 & 3 - 2\beta^2 \end{array} \right] \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right\}
= \frac{1}{2(\beta^2 - \frac{1}{2})(\beta^2 - 2)} \left\{ \begin{array}{c} 1 - \beta^2 \\ 1 \end{array} \right\}.
\]
The solution, graphically

steady-state response for a 2 dof system, harmonic load

\[\beta_2 = \frac{\omega^2}{\omega_0^2} \]

Normalized displacement

\[\xi_1/\Delta_{st} \]
\[\xi_2/\Delta_{st} \]

An example

The Homogeneous Problem

Modal Analysis

Examples
Comment to the Steady State Solution

The steady state solution is

\[x_{s-s} = \Delta_{st} \frac{1}{2(\beta^2 - \frac{1}{2})(\beta^2 - 2)} \left\{ 1 - \beta^2 \right\} \sin \omega t. \]

As it’s apparent in the previous slide, we have two different values of the excitation frequency for which the \textit{dynamic amplification factor} goes to infinity.

For an undamped SDOF system, we had a single frequency of excitation that excites a resonant response, now for a two degrees of freedom system we have two different excitation frequencies that excite a resonant response. We know how to compute a particular integral for a MDOF system (at least for a harmonic loading), what do we miss to be able to determine the integral of motion?
Comment to the Steady State Solution

The steady state solution is

\[x_{ss} = \Delta_{st} \frac{1}{2(\beta^2 - \frac{1}{2})(\beta^2 - 2)} \left\{ \begin{array}{c} 1 - \beta^2 \\ 1 \end{array} \right\} \sin\omega t. \]

As it’s apparent in the previous slide, we have two different values of the excitation frequency for which the dynamic amplification factor goes to infinity.

For an undamped SDOF system, we had a single frequency of excitation that excites a resonant response, now for a two degrees of freedom system we have two different excitation frequencies that excite a resonant response.
Comment to the Steady State Solution

The steady state solution is

\[x_{ss} = \Delta_{st} \frac{1}{2(\beta^2 - \frac{1}{2})(\beta^2 - 2)} \left\{ \begin{array}{c} 1 - \beta^2 \\ 1 \end{array} \right\} \sin \omega t. \]

As it’s apparent in the previous slide, we have two different values of the excitation frequency for which the *dynamic amplification factor* goes to infinity.

For an undamped SDOF system, we had a single frequency of excitation that excites a *resonant response*, now for a two degrees of freedom system we have two different excitation frequencies that excite a resonant response.

We know how to compute a particular integral for a MDOF system (at least for a harmonic loading), what do we miss to be able to determine the integral of motion?
Homogeneous equation of motion

To understand the behaviour of a *MDOF* system, we have to study the homogeneous solution. Let’s start writing the homogeneous equation of motion,

\[M \ddot{x} + K x = 0. \]
Homogeneous equation of motion

To understand the behaviour of a *MDOF* system, we have to study the homogeneous solution. Let’s start writing the homogeneous equation of motion,

\[M \ddot{x} + K x = 0. \]

The solution, in analogy with the *SDOF* case, can be written in terms of a harmonic function of unknown frequency and, using the concept of separation of variables, of a constant vector, the so called *shape vector* \(\psi \):

\[x(t) = \psi(A \sin \omega t + B \cos \omega t). \]
Homogeneous equation of motion

To understand the behaviour of a MDOF system, we have to study the homogeneous solution.
Let’s start writing the homogeneous equation of motion,

\[M \ddot{x} + K x = 0. \]

The solution, in analogy with the SDOF case, can be written in terms of a harmonic function of unknown frequency and, using the concept of separation of variables, of a constant vector, the so called shape vector \(\psi \):

\[x(t) = \psi(A \sin \omega t + B \cos \omega t). \]

Substituting in the equation of motion, we have

\[(K - \omega^2 M) \psi(A \sin \omega t + B \cos \omega t) = 0 \]
Eigenvalues

The previous equation must hold for every value of t, so it can be simplified removing the time dependency:

\[
(K - \omega^2 M) \psi = 0.
\]

This is a homogeneous linear equation, with unknowns ψ_i and the coefficients that depends on the parameter ω^2.

Speaking of homogeneous systems, we know that:

- there is always a trivial solution, $\psi = 0$,
- non-trivial solutions are possible if the determinant of the matrix of coefficients is equal to zero, $\det(K - \omega^2 M) = 0$.

The eigenvalues of the MDOF system are the values of ω^2 for which the above equation (the equation of frequencies) is verified or, in other words, the frequencies of vibration associated with the shapes for which $K\psi\sin(\omega t) = \omega^2 M\psi\sin(\omega t)$.
Eigenvalues

The previous equation must hold for every value of \(t \), so it can be simplified removing the time dependency:

\[
(K - \omega^2 M) \psi = 0.
\]

This is a homogeneous linear equation, with unknowns \(\psi_i \) and the coefficients that depends on the parameter \(\omega^2 \).

Speaking of homogeneous systems, we know that

- there is always a trivial solution, \(\psi = 0 \), and
- non-trivial solutions are possible if the determinant of the matrix of coefficients is equal to zero,

\[
\det (K - \omega^2 M) = 0
\]
Eigenvalues

The previous equation must hold for every value of t, so it can be simplified removing the time dependency:

$$(K - \omega^2 M) \psi = 0.$$

This is a homogeneous linear equation, with unknowns ψ_i and the coefficients that depends on the parameter ω^2.

Speaking of homogeneous systems, we know that

- there is always a *trivial solution*, $\psi = 0$, and
- *non-trivial solutions* are possible if the determinant of the matrix of coefficients is equal to zero,

$$\det (K - \omega^2 M) = 0$$

The *eigenvalues* of the MDOF system are the values of ω^2 for which the above equation (the *equation of frequencies*) is verified or, in other words, the frequencies of vibration associated with the shapes for which

$$K \psi \sin \omega t = \omega^2 M \psi \sin \omega t.$$
Eigenvalues, cont.

For a system with N degrees of freedom the expansion of $\det(K - \omega^2 M)$ is an algebraic polynomial of degree N in ω^2. A polynomial of degree N has exactly N roots, either real or complex conjugate.

In Dynamics of Structures those roots ω_i^2, $i = 1, \ldots, N$ are all real because the structural matrices are symmetric matrices. Moreover, if both K and M are positive definite matrices (a condition that is always satisfied by stable structural systems) all the roots, all the eigenvalues, are strictly positive:

$$\omega_i^2 \geq 0, \quad \text{for } i = 1, \ldots, N.$$
Eigenvectors

Substituting one of the \(N \) roots \(\omega_i^2 \) in the characteristic equation,

\[
(K - \omega_i^2 M) \psi_i = 0
\]

the resulting system of \(N - 1 \) linearly independent equations can be solved (except for a scale factor) for \(\psi_i \), the eigenvector corresponding to the eigenvalue \(\omega_i^2 \).
Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the value of one of the components and compute the values of all the other $N - 1$ components using the $N - 1$ linearly independent equations.
Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the value of one of the components and compute the values of all the other \(N - 1 \) components using the \(N - 1 \) linearly indipendent equations.

It is common to impose to each eigenvector a *normalisation with respect to the mass matrix*, so that

\[
\psi_i^T M \psi_i = m
\]

where \(m \) represents the unit mass.
Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the value of one of the components and compute the values of all the other $N - 1$ components using the $N - 1$ linearly independent equations.

It is common to impose to each eigenvector a normalisation with respect to the mass matrix, so that

$$\psi_i^T M \psi_i = m$$

where m represents the unit mass.

Please consider that, substituting different eigenvalues in the equation of free vibrations, you have different linear systems, leading to different eigenvectors.
The most general expression (the general integral) for the displacement of a homogeneous system is

\[\mathbf{x}(t) = \sum_{i=1}^{N} \psi_i (A_i \sin \omega_i t + B_i \cos \omega_i t). \]

In the general integral there are \(2N\) unknown constants of integration, that must be determined in terms of the initial conditions.
Initial Conditions

Usually the initial conditions are expressed in terms of initial displacements and initial velocities \(x_0 \) and \(\dot{x}_0 \), so we start deriving the expression of displacement with respect to time to obtain

\[
\dot{x}(t) = \sum_{i=1}^{N} \psi_i \omega_i (A_i \cos \omega_i t - B_i \sin \omega_i t)
\]

and evaluating the displacement and velocity for \(t = 0 \) it is

\[
x(0) = \sum_{i=1}^{N} \psi_i B_i = x_0, \quad \dot{x}(0) = \sum_{i=1}^{N} \psi_i \omega_i A_i = \dot{x}_0.
\]
Initial Conditions

Usually the initial conditions are expressed in terms of initial displacements and initial velocities x_0 and \dot{x}_0, so we start deriving the expression of displacement with respect to time to obtain

$$\dot{x}(t) = \sum_{i=1}^{N} \psi_i \omega_i (A_i \cos \omega_i t - B_i \sin \omega_i t)$$

and evaluating the displacement and velocity for $t = 0$ it is

$$x(0) = \sum_{i=1}^{N} \psi_i B_i = x_0, \quad \dot{x}(0) = \sum_{i=1}^{N} \psi_i \omega_i A_i = \dot{x}_0.$$

The above equations are vector equations, each one corresponding to a system of N equations, so we can compute the $2N$ constants of integration solving the $2N$ equations

$$\sum_{i=1}^{N} \psi_{ji} B_i = x_{0,j}, \quad \sum_{i=1}^{N} \psi_{ji} \omega_i A_i = \dot{x}_{0,j}, \quad j = 1, \ldots, N.$$
Take into consideration two distinct eigenvalues, ω_r^2 and ω_s^2, and write the characteristic equation for each eigenvalue:

\[
K \psi_r = \omega_r^2 M \psi_r \\
K \psi_s = \omega_s^2 M \psi_s
\]
Orthogonality - 1

Take into consideration two distinct eigenvalues, ω_r^2 and ω_s^2, and write the characteristic equation for each eigenvalue:

$$K \psi_r = \omega_r^2 M \psi_r$$
$$K \psi_s = \omega_s^2 M \psi_s$$

premultiply each equation member by the transpose of the other eigenvector

$$\psi_s^T K \psi_r = \omega_r^2 \psi_s^T M \psi_r$$
$$\psi_r^T K \psi_s = \omega_s^2 \psi_r^T M \psi_s$$
The term $\psi_s^T K \psi_r$ is a scalar, hence

$$\psi_s^T K \psi_r = (\psi_s^T K \psi_r)^T = \psi_r^T K^T \psi_s$$

but K is symmetrical, $K^T = K$ and we have

$$\psi_s^T K \psi_r = \psi_r^T K \psi_s.$$

By a similar derivation

$$\psi_s^T M \psi_r = \psi_r^T M \psi_s.$$
Substituting our last identities in the previous equations, we have

\[\psi_r^T K \psi_s = \omega_r^2 \psi_r^T M \psi_s \]
\[\psi_r^T K \psi_s = \omega_s^2 \psi_r^T M \psi_s \]

subtracting member by member we find that

\[(\omega_r^2 - \omega_s^2) \psi_r^T M \psi_s = 0 \]
Substituting our last identities in the previous equations, we have

\[\psi_T^r K \psi_s = \omega_r^2 \psi_T^r M \psi_s \]
\[\psi_T^r K \psi_s = \omega_s^2 \psi_T^r M \psi_s \]

subtracting member by member we find that

\[(\omega_r^2 - \omega_s^2) \psi_T^r M \psi_s = 0 \]

We started with the hypothesis that \(\omega_r^2 \neq \omega_s^2 \), so for every \(r \neq s \) we have that the corresponding eigenvectors are orthogonal with respect to the mass matrix

\[\psi_T^r M \psi_s = 0, \quad \text{for} \ r \neq s. \]
The eigenvectors are orthogonal also with respect to the stiffness matrix:

\[\psi_s^T K \psi_r = \omega_r^2 \psi_s^T M \psi_r = 0, \quad \text{for } r \neq s. \]
The eigenvectors are orthogonal also with respect to the stiffness matrix:

\[\psi_s^T K \psi_r = \omega_r^2 \psi_s^T M \psi_r = 0, \quad \text{for} \ r \neq s. \]

By definition

\[M_i = \psi_i^T M \psi_i \]

and consequently

\[\psi_i^T K \psi_i = \omega_i^2 M_i. \]
The eigenvectors are orthogonal also with respect to the stiffness matrix:

\[\psi_s^T K \psi_r = \omega_r^2 \psi_s^T M \psi_r = 0, \quad \text{for } r \neq s. \]

By definition

\[M_i = \psi_i^T M \psi_i \]

and consequently

\[\psi_i^T K \psi_i = \omega_i^2 M_i. \]

\(M_i \) is the modal mass associated with mode no. \(i \) while \(K_i \equiv \omega_i^2 M_i \) is the respective modal stiffness.
Eigenvectors are a base

The eigenvectors are linearly independent, so for every vector \(x \) we can write

\[
x = \sum_{j=1}^{N} \psi_j q_j.
\]

The coefficients are readily given by premultiplication of \(x \) by \(\psi_i^T M \), because

\[
\psi_i^T M x = \sum_{j=1}^{N} \psi_i^T M \psi_j q_j = \psi_i^T M \psi_i q_i = M_i q_i
\]

in virtue of the orthogonality of the eigenvectors with respect to the mass matrix, and the above relationship gives

\[
q_j = \frac{\psi_j^T M x}{M_j}.
\]
Eigenvectors are a base

Generalising our results for the displacement vector to the acceleration vector and expliciting the time dependency, it is

\[
\begin{align*}
\mathbf{x}(t) &= \sum_{j=1}^{N} \psi_j q_j(t), & \ddot{\mathbf{x}}(t) &= \sum_{j=1}^{N} \psi_j \ddot{q}_j(t), \\
x_i(t) &= \sum_{j=1}^{N} \Psi_{ij} q_j(t), & \ddot{x}_i(t) &= \sum_{j=1}^{N} \psi_{ij} \ddot{q}_j(t).
\end{align*}
\]

Introducing \(\mathbf{q}(t) \), the vector of modal coordinates and \(\Psi \), the eigenvector matrix, whose columns are the eigenvectors, we can write

\[
\begin{align*}
\mathbf{x}(t) &= \Psi \mathbf{q}(t), & \ddot{\mathbf{x}}(t) &= \Psi \ddot{\mathbf{q}}(t).
\end{align*}
\]
EoM in Modal Coordinates...

Substituting the last two equations in the equation of motion,

\[M \Psi \ddot{q} + K \Psi q = \mathbf{p}(t) \]

premultiplying by \(\Psi^T \)

\[\Psi^T M \Psi \ddot{q} + \Psi^T K \Psi q = \Psi^T \mathbf{p}(t) \]

introducing the so called starred matrices, with \(\mathbf{p}^*(t) = \Psi^T \mathbf{p}(t) \), we can finally write

\[M^* \ddot{q} + K^* q = \mathbf{p}^*(t) \]

The vector equation above corresponds to the set of scalar equations

\[p_i^* = \sum m_i^* \ddot{q}_j + \sum k_i^* q_j, \quad i = 1, \ldots, N. \]
... are N independent equations!

We must examine the structure of the starred symbols. The generic element, with indexes i and j, of the starred matrices can be expressed in terms of single eigenvectors,

$$
m_{ij}^* = \psi_i^T M \psi_j = \delta_{ij} M_i,
$$

$$
k_{ij}^* = \psi_i^T K \psi_j = \omega_i^2 \delta_{ij} M_i.
$$

where δ_{ij} is the Kroneker symbol,

$$
\delta_{ij} = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases}
$$
... are N independent equations!

We must examine the structure of the starred symbols. The generic element, with indexes i and j, of the starred matrices can be expressed in terms of single eigenvectors,

$$
m_{ij}^* = \psi_i^T M \psi_j = \delta_{ij} M_i,
$$

$$
k_{ij}^* = \psi_i^T K \psi_j = \omega_i^2 \delta_{ij} M_i.
$$

where δ_{ij} is the Kroneker symbol,

$$
\delta_{ij} = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases}
$$

Substituting in the equation of motion, with $p_i^* = \psi_i^T p(t)$ we have a set of uncoupled equations

$$
M_i \ddot{q}_i + \omega_i^2 M_i q_i = p_i^*(t), \quad i = 1, \ldots, N
$$
Initial Conditions Revisited

The initial displacements can be written in modal coordinates,

\[x_0 = \Psi q_0 \]

and premultiplying both members by \(\Psi^T M \) we have the following relationship:

\[\Psi^T M x_0 = \Psi^T M \Psi q_0 = M^* q_0. \]

Premultiplying by the inverse of \(M^* \) and taking into account that \(M^* \) is diagonal,

\[q_0 = (M^*)^{-1} \Psi^T M x_0 \Rightarrow q_{i0} = \frac{\psi_i^T M x_0}{M_i} \]

and, analogously,

\[\dot{q}_{i0} = \frac{\psi_i^T M \dot{x}_0}{M_i} \]
2 DOF System

\[k_1 = k, \quad k_2 = 2k; \quad m_1 = 2m, \quad m_2 = m; \]
\[p(t) = p_0 \sin \omega t. \]

\[x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad p(t) = \begin{bmatrix} 0 \\ p_0 \end{bmatrix} \sin \omega t, \]

\[M = m \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \quad K = k \begin{bmatrix} 3 & -2 \\ -2 & 2 \end{bmatrix}. \]
The equation of frequencies is

\[\| K - \omega^2 M \| = \begin{vmatrix} 3k - 2\omega^2 m & -2k \\ -2k & 2k - \omega^2 m \end{vmatrix} = 0. \]
The equation of frequencies is

\[
\|(K - \omega^2 M)\| = \begin{vmatrix} 3k - 2\omega^2 m & -2k \\ -2k & 2k - \omega^2 m \end{vmatrix} = 0.
\]

Developing the determinant

\[
(2m^2)\omega^4 - (7mk)\omega^2 + (2k^2)\omega^0 = 0
\]
Equation of frequencies

The equation of frequencies is

$$\| \mathbf{K} - \omega^2 \mathbf{M} \| = \begin{bmatrix} 3k - 2\omega^2 m & -2k \\ -2k & 2k - \omega^2 m \end{bmatrix} = 0.$$

Developing the determinant

$$(2m^2)\omega^4 - (7mk)\omega^2 + (2k^2)\omega^0 = 0$$

Solving the algebraic equation in ω^2

$$\omega_1^2 = \frac{k}{m} \frac{7 - \sqrt{33}}{4}$$
$$\omega_1^2 = 0.31386 \frac{k}{m}$$
$$\omega_2^2 = \frac{k}{m} \frac{7 + \sqrt{33}}{4}$$
$$\omega_2^2 = 3.18614 \frac{k}{m}$$
Eigenvectors

Substituting ω_1^2 for ω^2 in the first of the characteristic equations gives the ratio between the components of the first eigenvector,

$$k \left(3 - 2 \times 0.31386 \right) \psi_{11} - 2k \psi_{21} = 0$$

while substituting ω_2^2 gives

$$k \left(3 - 2 \times 3.18614 \right) \psi_{12} - 2k \psi_{22} = 0.$$
Eigenvectors

Substituting ω_1^2 for ω^2 in the first of the characteristic equations gives the ratio between the components of the first eigenvector,

$$k(3 - 2 \times 0.31386)\psi_{11} - 2k\psi_{21} = 0$$

while substituting ω_2^2 gives

$$k(3 - 2 \times 3.18614)\psi_{12} - 2k\psi_{22} = 0.$$

Solving with the arbitrary assignment $\psi_{21} = \psi_{22} = 1$ gives the unnormalized eigenvectors,

$$\psi_1 = \begin{cases} +0.84307 \\ +1.00000 \end{cases}, \quad \psi_2 = \begin{cases} -0.59307 \\ +1.00000 \end{cases}.$$
Normalization

We compute first M_1 and M_2,

$$M_1 = \psi_1^T M \psi_1$$

$$= \begin{bmatrix} 0.84307 & 1 \end{bmatrix} \begin{bmatrix} 2m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} 0.84307 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1.68614m & m \end{bmatrix} \begin{bmatrix} 0.84307 \\ 1 \end{bmatrix} = 2.42153m$$

$$M_2 = 1.70346m$$

the *adimensional* normalisation factors are

$$\alpha_1 = \sqrt{2.42153}, \quad \alpha_2 = \sqrt{1.70346}.$$

Applying the normalisation factors to the respective unnormalised eigenvectors and collecting them in a matrix, we have the *matrix of normalized eigenvectors*

$$\Psi = \begin{bmatrix} +0.54177 & -0.45440 \\ +0.64262 & +0.76618 \end{bmatrix}$$
The modal loading is

\[p^*(t) = \Psi^T p(t) \]

\[= p_0 \begin{bmatrix} +0.54177 & +0.64262 \\ -0.45440 & +0.76618 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \sin \omega t \]

\[= p_0 \left\{ +0.64262 \right\} \sin \omega t \]
Modal EoM

Substituting its modal expansion for x into the equation of motion and premultiplying by Ψ^T we have the uncoupled modal equation of motion

$$\begin{cases} m\ddot{q}_1 + 0.31386k q_1 = +0.64262 p_0 \sin \omega t \\ m\ddot{q}_2 + 3.18614k q_2 = +0.76618 p_0 \sin \omega t \end{cases}$$

Note that all the terms are dimensionally correct. Dividing by m both equations, we have

$$\begin{cases} \ddot{q}_1 + \omega_1^2 q_1 = +0.64262 \frac{p_0}{m} \sin \omega t \\ \ddot{q}_2 + \omega_2^2 q_2 = +0.76618 \frac{p_0}{m} \sin \omega t \end{cases}$$
Particular Integral

We set

\[\xi_1 = C_1 \sin \omega t, \quad \ddot{\xi} = -\omega^2 C_1 \sin \omega t \]

and substitute in the first modal EoM:

\[C_1 (\omega_1^2 - \omega^2) \sin \omega t = \frac{p^*_1}{m} \sin \omega t \]

solving for \(C_1 \)

\[C_1 = \frac{p^*_1}{m} \frac{1}{\omega_1^2 - \omega^2} \]

with \(\omega_1^2 = K_1/m \Rightarrow m = K_1/\omega_1^2 \):

\[C_1 = \frac{p^*_1}{K_1} \frac{\omega_1^2}{\omega_1^2 - \omega^2} = \Delta^{(1)}_{st} \frac{1}{1 - \beta_1^2} \quad \text{with} \quad \Delta^{(1)}_{st} = \frac{p^*_1}{K_1} = 2.047 \frac{p_0}{k} \quad \text{and} \quad \beta_1 = \frac{\omega}{\omega_1} \]

of course

\[C_2 = \Delta^{(2)}_{st} \frac{1}{1 - \beta_2^2} \quad \text{with} \quad \Delta^{(2)}_{st} = \frac{p^*_2}{K_2} = 0.2404 \frac{p_0}{k} \quad \text{and} \quad \beta_2 = \frac{\omega}{\omega_2} \]
Integrals

The integrals, for our loading, are thus

\[
\begin{align*}
q_1(t) &= A_1 \sin \omega_1 t + B_1 \cos \omega_1 t + \Delta_{st}^{(1)} \frac{\sin \omega t}{1 - \beta_1^2} \\
q_2(t) &= A_2 \sin \omega_2 t + B_2 \cos \omega_2 t + \Delta_{st}^{(2)} \frac{\sin \omega t}{1 - \beta_2^2}
\end{align*}
\]

for a system initially at rest

\[
\begin{align*}
q_1(t) &= \Delta_{st}^{(1)} \frac{1}{1 - \beta_1^2} (\sin \omega t - \beta_1 \sin \omega_1 t) \\
q_2(t) &= \Delta_{st}^{(2)} \frac{1}{1 - \beta_2^2} (\sin \omega t - \beta_2 \sin \omega_2 t)
\end{align*}
\]

we are interested in structural degrees of freedom, too... disregarding transient

\[
\begin{align*}
x_1(t) &= \left(\psi_{11} \frac{\Delta_{st}^{(1)}}{1 - \beta_1^2} + \psi_{12} \frac{\Delta_{st}^{(2)}}{1 - \beta_2^2} \right) \sin \omega t = \left(\frac{1.10926}{1 - \beta_1^2} - \frac{0.109271}{1 - \beta_2^2} \right) \frac{p_0}{k} \sin \omega t \\
x_2(t) &= \left(\psi_{21} \frac{\Delta_{st}^{(1)}}{1 - \beta_1^2} + \psi_{22} \frac{\Delta_{st}^{(2)}}{1 - \beta_2^2} \right) \sin \omega t = \left(\frac{1.31575}{1 - \beta_1^2} + \frac{0.184245}{1 - \beta_2^2} \right) \frac{p_0}{k} \sin \omega t
\end{align*}
\]
The response in modal coordinates

To have a feeling of the response in modal coordinates, let’s say that the frequency of the load is \(\omega = 2\omega_0 \), hence \(\beta_1 = \frac{2.0}{\sqrt{0.31386}} = 6.37226 \) and
\[
\beta_2 = \frac{2.0}{\sqrt{3.18614}} = 0.62771.
\]

In the graph above, the responses are plotted against an adimensional time coordinate \(\alpha = \omega_0 t \), while the ordinates are adimensionalised with respect to \(\Delta_{st} = \frac{p_0}{k} \).
The response in structural coordinates

Using the same normalisation factors, here are the response functions in terms of $x_1 = \psi_{11}q_1 + \psi_{12}q_2$ and $x_2 = \psi_{21}q_1 + \psi_{22}q_2$:

\[x_1(\alpha)/\Delta_st \quad x_2(\alpha)/\Delta_st \]

\[\alpha = \omega_0 t \]