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Consider an undamped system with two masses and two degrees of
freedom.

k1 k2 k3
m1 m2

x1 x2

p1(t) p2(t)
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We can separate the two masses, single out the spring forces and,
using the D’Alembert Principle, the inertial forces and, finally. write
an equation of dynamic equilibrium for each mass.

p2

m2ẍ2
k3x2k2(x2 − x1)

m2ẍ2 − k2x1 + (k2 + k3)x2 = p2(t)

m1ẍ1
k2(x1 − x2)k1x1

p1

m1ẍ1 + (k1 + k2)x1 − k2x2 = p1(t)



Multi DoF
Systems

Giacomo Boffi

Introductory
Remarks
An Example

The Equation of
Motion

Matrices are Linear
Operators

Properties of
Structural Matrices

An example

The
Homogeneous
Problem

Modal Analysis

Examples

The equation of motion of a 2DOF system

With some little rearrangement we have a system of two linear
differential equations in two variables, x1(t) and x2(t):{

m1ẍ1 + (k1 + k2)x1 − k2x2 = p1(t),

m2ẍ2 − k2x1 + (k2 + k3)x2 = p2(t).
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The equation of motion of a 2DOF system

Introducing the loading vector p, the vector of inertial forces fI and
the vector of elastic forces fS ,

p =

{
p1(t)
p2(t)

}
, fI =

{
fI,1
fI,2

}
, fS =

{
fS,1
fS,2

}
we can write a vectorial equation of equilibrium:

fI + fS = p(t).
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fS =Kx

It is possible to write the linear relationship between fS and the
vector of displacements x =

{
x1x2

}T in terms of a matrix product,
introducing the so called stiffness matrix K.

In our example it is

fS =

[
k1 + k2 −k2
−k2 k2 + k3

]
x = Kx

The stiffness matrix K has a number of rows equal to the number of
elastic forces, i.e., one force for each DOF and a number of columns
equal to the number of the DOF.
The stiffness matrix K is hence a square matrix K

ndof×ndof
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fI =M ẍ

Analogously, introducing the mass matrix M that, for our example,
is

M =

[
m1 0
0 m2

]
we can write

fI = M ẍ.

Also the mass matrix M is a square matrix, with number of rows
and columns equal to the number of DOF’s.
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Matrix Equation

Finally it is possible to write the equation of motion in matrix format:

M ẍ+Kx = p(t).

Of course it is possible to take into consideration also the damping
forces, taking into account the velocity vector ẋ and introducing
a damping matrix C too, so that we can eventually write

M ẍ+C ẋ+Kx = p(t).

But today we are focused on undamped systems...
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M ẍ+C ẋ+Kx = p(t).

But today we are focused on undamped systems...



Multi DoF
Systems

Giacomo Boffi

Introductory
Remarks
An Example

The Equation of
Motion

Matrices are Linear
Operators

Properties of
Structural Matrices

An example

The
Homogeneous
Problem

Modal Analysis

Examples

Properties of K

I K is symmetrical.
The elastic force exerted on mass i due to an unit displacement
of mass j, fS,i = kij is equal to the force kji exerted on mass j
due to an unit diplacement of mass i, in virtue of Betti’s
theorem (also known as Maxwell-Betti reciprocal work theorem).

I K is a positive definite matrix.
The strain energy V for a discrete system is

V =
1

2
xTfS ,

and expressing fS in terms of K and x we have

V =
1

2
xTKx,

and because the strain energy is positive for x 6= 0 it follows
that K is definite positive.
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Properties of M

Restricting our discussion to systems whose degrees of freedom are
the displacements of a set of discrete masses, we have that the mass
matrix is a diagonal matrix, with all its diagonal elements greater
than zero. Such a matrix is symmetrical and definite positive.
Both the mass and the stiffness matrix are symmetrical and definite
positive.

Note that the kinetic energy for a discrete system can be
written

T =
1

2
ẋTM ẋ.
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Generalisation of previous results

The findings in the previous two slides can be generalised to the
structural matrices of generic structural systems, with two main
exceptions.

1. For a general structural system, in which not all DOFs are
related to a mass, M could be semi-definite positive, that is for
some particular displacement vector the kinetic energy is zero.

2. For a general structural system subjected to axial loads, due to
the presence of geometrical stiffness it is possible that for some
particular displacement vector the strain energy is zero and K
is semi-definite positive.
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The problem

Graphical statement of the problem

k1 = 2k, k2 = k; m1 = 2m, m2 = m;

p(t) = p0 sinωt.

k1

x1 x2

m2

k2

m1

p(t)

The equations of motion

m1ẍ1 + k1x1 + k2 (x1 − x2) = p0 sinωt,

m2ẍ2 + k2 (x2 − x1) = 0.

... but we prefer the matrix notation ...
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m2ẍ2 + k2 (x2 − x1) = 0.

... but we prefer the matrix notation ...



Multi DoF
Systems

Giacomo Boffi

Introductory
Remarks
An Example

The Equation of
Motion

Matrices are Linear
Operators

Properties of
Structural Matrices

An example

The
Homogeneous
Problem

Modal Analysis

Examples

The steady state solution

We prefer the matrix notation because we can find the steady-state
response of a SDOF system exactly as we found the s-s solution for
a SDOF system.
Substituting x(t) = ξ sinωt in the equation of motion and
simplifying sinωt,

k

[
3 −1
−1 1

]
ξ −mω2

[
2 0
0 1

]
ξ = p0

{
1
0

}

dividing by k, with ω2
0 = k/m, β2 = ω2/ω2

0 and ∆st = p0/k the
above equation can be written([

3 −1
−1 1

]
− β2

[
2 0
0 1

])
ξ =

[
3− 2β2 −1
−1 1− β2

]
ξ = ∆st

{
1
0

}
.
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The steady state solution

The determinant of the matrix of coefficients is

Det = 2β4 − 5β2 + 2

but we want to write the polynomial in β in terms of its roots

Det = 2× (β2 − 1/2)× (β2 − 2).

Solving for ξ/∆st in terms of the inverse of the coefficient matrix
gives

ξ

∆st
=

1

2(β2 − 1
2)(β2 − 2)

[
1− β2 1

1 3− 2β2

]{
1
0

}
=

1

2(β2 − 1
2)(β2 − 2)

{
1− β2

1

}
.
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The solution, graphically
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Comment to the Steady State Solution

The steady state solution is

xs-s = ∆st
1

2(β2 − 1
2 )(β2 − 2)

{
1− β2

1

}
sinωt.

As it’s apparent in the previous slide, we have two different values of the
excitation frequency for which the dynamic amplification factor goes to
infinity.

For an undamped SDOF system, we had a single frequency of excitation
that excites a resonant response, now for a two degrees of freedom system
we have two different excitation frequencies that excite a resonant
response.

We know how to compute a particular integral for a MDOF system
(at least for a harmonic loading), what do we miss to be able to
determine the integral of motion?
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Homogeneous equation of motion

To understand the behaviour of a MDOF system, we have to study
the homogeneous solution.
Let’s start writing the homogeneous equation of motion,

M ẍ+Kx = 0.

The solution, in analogy with the SDOF case, can be written in
terms of a harmonic function of unknown frequency and, using the
concept of separation of variables, of a constant vector, the so called
shape vector ψ:

x(t) = ψ(A sinωt+B cosωt).

Substituting in the equation of motion, we have(
K − ω2M

)
ψ(A sinωt+B cosωt) = 0
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Eigenvalues

The previous equation must hold for every value of t, so it can be
simplified removing the time dependency:(

K − ω2M
)
ψ = 0.

This is a homogeneous linear equation, with unknowns ψi and the
coefficients that depends on the parameter ω2.

Speaking of homogeneous systems, we know that
I there is always a trivial solution, ψ = 0, and
I non-trivial solutions are possible if the determinant of the matrix of

coefficients is equal to zero,

det
(
K − ω2M

)
= 0

The eigenvalues of the MDOF system are the values of ω2 for which the
above equation (the equation of frequencies) is verified or, in other words,
the frequencies of vibration associated with the shapes for which

Kψ sinωt = ω2Mψ sinωt.
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The previous equation must hold for every value of t, so it can be
simplified removing the time dependency:(

K − ω2M
)
ψ = 0.

This is a homogeneous linear equation, with unknowns ψi and the
coefficients that depends on the parameter ω2.
Speaking of homogeneous systems, we know that
I there is always a trivial solution, ψ = 0, and
I non-trivial solutions are possible if the determinant of the matrix of

coefficients is equal to zero,

det
(
K − ω2M

)
= 0

The eigenvalues of the MDOF system are the values of ω2 for which the
above equation (the equation of frequencies) is verified or, in other words,
the frequencies of vibration associated with the shapes for which

Kψ sinωt = ω2Mψ sinωt.
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Eigenvalues, cont.

For a system with N degrees of freedom the expansion of
det
(
K − ω2M

)
is an algebraic polynomial of degree N in ω2.

A polynomial of degree N has exactly N roots, either real or
complex conjugate.

In Dynamics of Structures those roots ω2
i , i = 1, . . . , N are all real

because the structural matrices are symmetric matrices.
Moreover, if both K and M are positive definite matrices (a
condition that is always satisfied by stable structural systems) all the
roots, all the eigenvalues, are strictly positive:

ω2
i ≥ 0, for i = 1, . . . , N.
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Eigenvectors

Substituting one of the N roots ω2
i in the characteristic equation,(

K − ω2
iM

)
ψi = 0

the resulting system of N − 1 linearly independent equations can be
solved (except for a scale factor) for ψi, the eigenvector
corresponding to the eigenvalue ω2

i .
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Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the
value of one of the components and compute the values of all the
other N − 1 components using the N − 1 linearly indipendent
equations.

It is common to impose to each eigenvector a normalisation with
respect to the mass matrix, so that

ψT
i Mψi = m

where m represents the unit mass.

Please consider that, substituting different eigenvalues in the
equation of free vibrations, you have different linear systems,
leading to different eigenvectors.
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Initial Conditions

The most general expression (the general integral) for the
displacement of a homogeneous system is

x(t) =

N∑
i=1

ψi(Ai sinωit+Bi cosωit).

In the general integral there are 2N unknown constants of
integration, that must be determined in terms of the initial
conditions.
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Initial Conditions

Usually the initial conditions are expressed in terms of initial displacements
and initial velocities x0 and ẋ0, so we start deriving the expression of
displacement with respect to time to obtain

ẋ(t) =

N∑
i=1

ψiωi(Ai cosωit−Bi sinωit)

and evaluating the displacement and velocity for t = 0 it is

x(0) =

N∑
i=1

ψiBi = x0, ẋ(0) =

N∑
i=1

ψiωiAi = ẋ0.

The above equations are vector equations, each one corresponding to a
system of N equations, so we can compute the 2N constants of
integration solving the 2N equations

N∑
i=1

ψjiBi = x0,j ,

N∑
i=1

ψjiωiAi = ẋ0,j , j = 1, . . . , N.
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Orthogonality - 1

Take into consideration two distinct eigenvalues, ω2
r and ω2

s , and
write the characteristic equation for each eigenvalue:

Kψr = ω2
rMψr

Kψs = ω2
sMψs

premultiply each equation member by the transpose of the other
eigenvector

ψT
s Kψr = ω2

rψ
T
s Mψr

ψT
r Kψs = ω2

sψ
T
r Mψs
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Orthogonality - 2

The term ψT
s Kψr is a scalar, hence

ψT
s Kψr =

(
ψT

s Kψr

)T
= ψT

r K
T ψs

but K is symmetrical, KT = K and we have

ψT
s Kψr = ψT

r Kψs.

By a similar derivation

ψT
s Mψr = ψT

r Mψs.
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Orthogonality - 3

Substituting our last identities in the previous equations, we have

ψT
r Kψs = ω2

rψ
T
r Mψs

ψT
r Kψs = ω2

sψ
T
r Mψs

subtracting member by member we find that

(ω2
r − ω2

s) ψT
r Mψs = 0

We started with the hypothesis that ω2
r 6= ω2

s , so for every r 6= s we
have that the corresponding eigenvectors are orthogonal with respect
to the mass matrix

ψT
r Mψs = 0, for r 6= s.
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Orthogonality - 4

The eigenvectors are orthogonal also with respect to the stiffness
matrix:

ψT
s Kψr = ω2

rψ
T
s Mψr = 0, for r 6= s.

By definition
Mi = ψT

i Mψi

and consequently
ψT

i Kψi = ω2
iMi.

Mi is the modal mass associated with mode no. i while Ki ≡ ω2
iMi

is the respective modal stiffness.
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Eigenvectors are a base

The eigenvectors are linearly independent, so for every vector x we
can write

x =

N∑
j=1

ψjqj .

The coefficients are readily given by premultiplication of x by ψT
i M ,

because

ψT
i M x =

N∑
j=1

ψT
i Mψjqj = ψT

i Mψiqi = Miqi

in virtue of the ortogonality of the eigenvectors with respect to the
mass matrix, and the above relationship gives

qj =
ψT

j M x

Mj
.
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Eigenvectors are a base

Generalising our results for the displacement vector to the
acceleration vector and expliciting the time dependency, it is

x(t) =

N∑
j=1

ψjqj(t), ẍ(t) =

N∑
j=1

ψj q̈j(t),

xi(t) =

N∑
j=1

Ψijqj(t), ẍi(t) =

N∑
j=1

ψij q̈j(t).

Introducing q(t), the vector of modal coordinates and Ψ, the
eigenvector matrix, whose columns are the eigenvectors, we can write

x(t) = Ψ q(t), ẍ(t) = Ψ q̈(t).
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EoM in Modal Coordinates...

Substituting the last two equations in the equation of motion,

M Ψ q̈ +KΨ q = p(t)

premultiplying by ΨT

ΨTM Ψ q̈ + ΨTKΨ q = ΨTp(t)

introducing the so called starred matrices, with p?(t) = ΨTp(t), we
can finally write

M? q̈ +K? q = p?(t)

The vector equation above corresponds to the set of scalar equations

p?i =
∑

m?
ij q̈j +

∑
k?ijqj , i = 1, . . . , N.
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... are N independent equations!

We must examine the structure of the starred symbols.
The generic element, with indexes i and j, of the starred matrices
can be expressed in terms of single eigenvectors,

m?
ij = ψT

i Mψj = δijMi,

k?ij = ψT
i Kψj = ω2

i δijMi.

where δij is the Kroneker symbol,

δij =

{
1 i = j

0 i 6= j

Substituting in the equation of motion, with p?i = ψT
i p(t) we have

a set of uncoupled equations

Miq̈i + ω2
iMiqi = p?i (t), i = 1, . . . , N
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where δij is the Kroneker symbol,

δij =

{
1 i = j
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Initial Conditions Revisited

The initial displacements can be written in modal coordinates,

x0 = Ψ q0

and premultiplying both members by ΨTM we have the following
relationship:

ΨTM x0 = ΨTM Ψ q0 = M?q0.

Premultiplying by the inverse of M? and taking into account that
M? is diagonal,

q0 = (M?)−1 ΨTM x0 ⇒ qi0 =
ψT

i M x0

Mi

and, analogously,

q̇i0 =
ψi

TM ẋ0

Mi
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2 DOF System

k1 = k, k2 = 2k; m1 = 2m, m2 = m;

p(t) = p0 sinωt.

k1

x1 x2

m2

k2

m1

p(t)

x =

{
x1
x2

}
, p(t) =

{
0
p0

}
sinωt,

M = m

[
2 0
0 1

]
, K = k

[
3 −2
−2 2

]
.
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Equation of frequencies

The equation of frequencies is

∥∥K − ω2M
∥∥ =

∥∥∥∥3k − 2ω2m −2k
−2k 2k − ω2m

∥∥∥∥ = 0.

Developing the determinant

(2m2)ω4 − (7mk)ω2 + (2k2)ω0 = 0

Solving the algebraic equation in ω2

ω2
1 =

k

m

7−
√

33

4
ω2
2 =

k

m

7 +
√

33

4

ω2
1 = 0.31386

k

m
ω2
2 = 3.18614

k

m
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Eigenvectors

Substituting ω2
1 for ω2 in the first of the characteristic equations

gives the ratio between the components of the first eigenvector,

k (3− 2× 0.31386)ψ11 − 2kψ21 = 0

while substituting ω2
2 gives

k (3− 2× 3.18614)ψ12 − 2kψ22 = 0.

Solving with the arbitrary assignment ψ21 = ψ22 = 1 gives the
unnormalized eigenvectors,

ψ1 =

{
+0.84307
+1.00000

}
, ψ2 =

{
−0.59307
+1.00000

}
.
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Normalization

We compute first M1 and M2,

M1 = ψT
1 Mψ1

=
{

0.84307, 1
}[2m 0

0 m

]{
0.84307

1

}
=
{

1.68614m, m
}{0.84307

1

}
= 2.42153m

M2 = 1.70346m

the adimensional normalisation factors are

α1 =
√

2.42153, α2 =
√

1.70346.

Applying the normalisation factors to the respective unnormalised eigenvectors
and collecting them in a matrix, we have the matrix of normalized eigenvectors

Ψ =

[
+0.54177 −0.45440
+0.64262 +0.76618

]
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Modal Loadings

The modal loading is

p?(t) = ΨT p(t)

= p0

[
+0.54177 +0.64262
−0.45440 +0.76618

] {
0
1

}
sinωt

= p0

{
+0.64262
+0.76618

}
sinωt
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Modal EoM

Substituting its modal expansion for x into the equation of motion
and premultiplying by ΨT we have the uncoupled modal equation of
motion {

mq̈1 + 0.31386k q1 = +0.64262 p0 sinωt

mq̈2 + 3.18614k q2 = +0.76618 p0 sinωt

Note that all the terms are dimensionally correct. Dividing by m
both equations, we haveq̈1 + ω2

1q1 = +0.64262
p0
m

sinωt

q̈2 + ω2
2q2 = +0.76618

p0
m

sinωt
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Particular Integral

We set
ξ1 = C1 sinωt, ξ̈ = −ω2C1 sinωt

and substitute in the first modal EoM:

C1

(
ω2
1 − ω2) sinωt =

p?1
m

sinωt

solving for C1

C1 =
p?1
m

1

ω2
1 − ω2

with ω2
1 = K1/m ⇒ m = K1/ω

2
1 :

C1 =
p?1
K1

ω2
1

ω2
1 − ω2

= ∆
(1)
st

1

1− β2
1

with ∆
(1)
st =

p?1
K1

= 2.047
p0
k

and β1 =
ω

ω1

of course

C2 = ∆
(2)
st

1

1− β2
2

with ∆
(2)
st =

p?2
K2

= 0.2404
p0
k

and β2 =
ω

ω2
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Integrals
The integrals, for our loading, are thus

q1(t) = A1 sinω1t+B1 cosω1t+ ∆
(1)
st

sinωt

1− β2
1

q2(t) = A2 sinω2t+B2 cosω2t+ ∆
(2)
st

sinωt

1− β2
2

for a system initially at rest
q1(t) = ∆

(1)
st

1

1− β2
1

(sinωt− β1 sinω1t)

q2(t) = ∆
(2)
st

1

1− β2
2

(sinωt− β2 sinω2t)

we are interested in structural degrees of freedom, too... disregarding transient
x1(t) =

(
ψ11

∆
(1)
st

1− β2
1

+ ψ12
∆

(2)
st

1− β2
2

)
sinωt =

(
1.10926

1− β2
1

− 0.109271

1− β2
2

)
p0
k

sinωt

x2(t) =

(
ψ21

∆
(1)
st

1− β2
1

+ ψ22
∆

(2)
st

1− β2
2

)
sinωt =

(
1.31575

1− β2
1

+
0.184245

1− β2
2

)
p0
k

sinωt
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The response in modal coordinates

To have a feeling of the response in modal coordinates, let’s say that the
frequency of the load is ω = 2ω0, hence β1 = 2.0√

0.31386
= 6.37226 and

β2 = 2.0√
3.18614

= 0.62771.

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 0  5  10  15  20  25  30

q
i/Δ

st

α = ωo t

q1(α)/Δst q2(α)/Δst

In the graph above, the responses are plotted against an adimensional time
coordinate α with α = ω0t, while the ordinates are adimensionalised with
respect to ∆st = p0
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The response in structural coordinates

Using the same normalisation factors, here are the response functions in
terms of x1 = ψ11q1 + ψ12q2 and x2 = ψ21q1 + ψ22q2:
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