Structural Matrices in MDOF Systems

Giacomo Boffi

http://intranet.dica.polimi.it/people/boffi-giacomo

Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano

March 22, 2018

Structural Matrices

Giacomo Boffi

Introductory

Structural

Evaluation of Structural Matrices

Choice of Property Formulation

Outline

Introductory Remarks

Structural Matrices

Orthogonality Relationships Additional Orthogonality Relationships

Evaluation of Structural Matrices

Flexibility Matrix

Example

Stiffness Matrix

Mass Matrix

Damping Matrix

Geometric Stiffness

External Loading

Choice of Property Formulation

Static Condensation

Example

Structural

Giacomo Boffi

Introductory

Structural

Matrices

Structural Matrices

Choice of Property Formulation

Introductory Remarks

Today we will study the properties of structural matrices, that is the operators that relate the vector of system coordinates \mathbf{x} and its time derivatives $\dot{\mathbf{x}}$ and $\ddot{\mathbf{x}}$ to the forces acting on the system nodes, \mathbf{f}_{S} , \mathbf{f}_{D} and \mathbf{f}_{I} , respectively.

In the end, we will see again the solution of a *MDOF* problem by superposition, and in general today we will revisit many of the subjects of our previous class.

Structural

Giacomo Boffi

Introductory

Structural Matrices

Evaluation of Structural

Introductory Remarks

Structural Matrices

Orthogonality Relationships Additional Orthogonality Relationships

Evaluation of Structural Matrices

Choice of Property Formulation

Structural Matrices

We already met the mass and the stiffness matrix, M and K, and tangentially we introduced also the dampig matrix C.

We have seen that these matrices express the linear relation that holds between the vector of system coordinates \mathbf{x} and its time derivatives $\dot{\mathbf{x}}$ and $\ddot{\mathbf{x}}$ to the forces acting on the system nodes, \mathbf{f}_{S} , \mathbf{f}_{D} and \mathbf{f}_{I} , elastic, damping and inertial force vectors.

$$m{M}\,\ddot{m{x}} + m{C}\,\dot{m{x}} + m{K}\,m{x} = m{p}(t)$$

 $m{f}_{\!1} + m{f}_{\!D} + m{f}_{\!S} = m{p}(t)$

Also, we know that ${\bf M}$ and ${\bf K}$ are symmetric and definite positive, and that it is possible to uncouple the equation of motion expressing the system coordinates in terms of the eigenvectors, ${\bf x}(t) = \sum q_i \psi_i$, where the q_i are the modal coordinates and the eigenvectors ψ_i are the non-trivial solutions to the equation of free vibrations,

$$(\mathbf{K} - \omega^2 \mathbf{M}) \, \boldsymbol{\psi} = \mathbf{0}$$

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural

Orthogonality Relationships Additional Orthogonality Relationships

Evaluation of Structural Matrices

Choice of Property Formulation

Free Vibrations

From the homogeneous, undamped problem

$$M\ddot{x} + Kx = 0$$

introducing separation of variables

$$\mathbf{x}(t) = \boldsymbol{\psi} (A \sin \omega t + B \cos \omega t)$$

we wrote the homogeneous linear system

$$(\mathbf{K} - \omega^2 \mathbf{M}) \, \boldsymbol{\psi} = \mathbf{0}$$

whose non-trivial solutions ψ_i for ω_i^2 such that $\|\mathbf{K} - \omega_i^2 \mathbf{M}\| = 0$ are the eigenvectors.

It was demonstrated that, for each pair of distint eigenvalues ω_r^2 and ω_s^2 , the corresponding eigenvectors obey the ortogonality condition,

$$\psi_s^T \mathbf{M} \psi_r = \delta_{rs} M_r, \quad \psi_s^T \mathbf{K} \psi_r = \delta_{rs} \omega_r^2 M_r.$$

Structural

Giacomo Boffi

Introductor Remarks

Structural

Matrices Orthogonality Relationships

Additional Orthogonality

Evaluation of Structural

Additional Orthogonality Relationships

Starting from the equation of free vibrations (EOFV)

$$\mathbf{K}\,\psi_s = \omega_s^2 \mathbf{M}\,\psi_s,$$

pre-multiplying both members by $\psi_{r}^{T} \textbf{K} \textbf{M}^{-1}$ we have

$$\psi_r^\mathsf{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \ \psi_s = \omega_s^2 \psi_r^\mathsf{T} \mathbf{K} \ \psi_s = \delta_{rs} \omega_r^4 M_r.$$

Pre-multiplying both members of the EOFV by $\psi_r^T KM^{-1}KM^{-1}$ we have (compare with our previous result)

$$\psi_r^T \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \psi_s = \omega_s^2 \psi_r^T \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \psi_s = \delta_{rs} \omega_r^6 M_r$$

and, generalizing,

$$oldsymbol{\psi}_{r}^{T}\left(oldsymbol{\mathcal{K}}oldsymbol{\mathcal{M}}^{-1}
ight)^{b}oldsymbol{\mathcal{K}}\,oldsymbol{\psi}_{s}=\delta_{rs}\left(\omega_{r}^{2}
ight)^{b+1}M_{r}.$$

Structural

Giacomo Boffi

Introductory

Structural

Matrices

Orthogonality Relationships

Additional Orthogonality Relationships

Evaluation of Structural Matrices

Choice of Property Formulation

Additional Relationships, 2

Let's rearrange the equation of free vibrations

$$\mathbf{M}\,\psi_{\mathfrak{s}}=\omega_{\mathfrak{s}}^{-2}\mathbf{K}\,\psi_{\mathfrak{s}}.$$

Pre-multiplying both members by $\psi_r^T MK^{-1}$ we have

$$\boldsymbol{\psi}_{r}^{\mathsf{T}} \mathbf{M} \mathbf{K}^{-1} \mathbf{M} \, \boldsymbol{\psi}_{s} = \boldsymbol{\omega}_{s}^{-2} \boldsymbol{\psi}_{r}^{\mathsf{T}} \mathbf{M} \, \boldsymbol{\psi}_{s} = \delta_{\mathit{rs}} \frac{M_{s}}{\boldsymbol{\omega}_{s}^{2}}.$$

Pre-multiplying both members of the EOFV by $\psi_r^T \left(m{M} m{K}^{-1}
ight)^2$ we have

$$\boldsymbol{\psi}_{r}^{T}\left(\boldsymbol{\mathsf{M}}\boldsymbol{\mathsf{K}}^{-1}\right)^{2}\boldsymbol{\mathsf{M}}\,\boldsymbol{\psi}_{s}=\boldsymbol{\omega}_{s}^{-2}\boldsymbol{\psi}_{r}^{T}\boldsymbol{\mathsf{M}}\boldsymbol{\mathsf{K}}^{-1}\boldsymbol{\mathsf{M}}\,\boldsymbol{\psi}_{s}=\delta_{\mathit{rs}}\frac{M_{s}}{\boldsymbol{\omega}_{s}^{4}}$$

and, generalizing,

$$\psi_r^{\mathsf{T}} \left(\mathbf{M} \mathbf{K}^{-1} \right)^b \mathbf{M} \, \psi_s = \delta_{rs} rac{M_s}{\omega_s^{2b}}$$

Structural

Giacomo Boffi

Introductory

Remarks

Matrices

Orthogonality Relationships

Additional Orthogonality Relationships

Evaluation of Structural Matrices

Choice of Property Formulation

Additional Relationships, 3

Defining $X^{(k)} = \boldsymbol{M} \left(\boldsymbol{M}^{-1} \boldsymbol{K} \right)^k$ we have

$$\begin{cases} \boldsymbol{\psi}_{r}^{T}\boldsymbol{X}^{(0)}\boldsymbol{\psi}_{s} = \boldsymbol{\psi}_{r}^{T}\boldsymbol{M}\boldsymbol{\psi}_{s} & = \delta_{rs}\left(\omega_{s}^{2}\right)^{0}\boldsymbol{M}_{s} \\ \boldsymbol{\psi}_{r}^{T}\boldsymbol{X}^{(1)}\boldsymbol{\psi}_{s} = \boldsymbol{\psi}_{r}^{T}\boldsymbol{K}\boldsymbol{\psi}_{s} & = \delta_{rs}\left(\omega_{s}^{2}\right)^{1}\boldsymbol{M}_{s} \\ \boldsymbol{\psi}_{r}^{T}\boldsymbol{X}^{(2)}\boldsymbol{\psi}_{s} = \boldsymbol{\psi}_{r}^{T}\left(\boldsymbol{K}\boldsymbol{M}^{-1}\right)^{1}\boldsymbol{K}\boldsymbol{\psi}_{s} & = \delta_{rs}\left(\omega_{s}^{2}\right)^{2}\boldsymbol{M}_{s} \\ \dots \\ \boldsymbol{\psi}_{r}^{T}\boldsymbol{X}^{(n)}\boldsymbol{\psi}_{s} = \boldsymbol{\psi}_{r}^{T}\left(\boldsymbol{K}\boldsymbol{M}^{-1}\right)^{n-1}\boldsymbol{K}\boldsymbol{\psi}_{s} & = \delta_{rs}\left(\omega_{s}^{2}\right)^{n}\boldsymbol{M}_{s} \end{cases}$$

Observing that $\left(oldsymbol{\mathcal{M}}^{-1}oldsymbol{\mathcal{K}}\right)^{-1}=\left(oldsymbol{\mathcal{K}}^{-1}oldsymbol{\mathcal{M}}\right)^1$

$$\begin{cases} \boldsymbol{\psi}_r^T \boldsymbol{X}^{(-1)} \boldsymbol{\psi}_s = \boldsymbol{\psi}_r^T \left(\boldsymbol{M} \boldsymbol{K}^{-1} \right)^1 \boldsymbol{M} \, \boldsymbol{\psi}_s &= \delta_{rs} \left(\omega_s^2 \right)^{-1} M_s \\ \dots \\ \boldsymbol{\psi}_r^T \boldsymbol{X}^{(-n)} \boldsymbol{\psi}_s = \boldsymbol{\psi}_r^T \left(\boldsymbol{M} \boldsymbol{K}^{-1} \right)^n \boldsymbol{M} \, \boldsymbol{\psi}_s &= \delta_{rs} \left(\omega_s^2 \right)^{-n} M_s \end{cases}$$

We can conclude that we the eigenvectors are orthogonal with respect to an infinite number of matrices $X^{(k)}$ (M and K being two particular cases):

$$\psi_r^T X^{(k)} \psi_s = \delta_{rs} \omega_s^{2k} M_s$$
 for $k = -\infty, \dots, \infty$.

Structural Matrices

Giacomo Boffi

Introductor

Structural

Matrices
Orthogonality
Relationships

Additional Orthogonality Relationships

Evaluation of Structural

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Flexibility Matrix

Example

Stiffness Matrix

Mass Matrix

Damping Matrix

Geometric Stiffness

External Loading

Choice of Property Formulation

Flexibility

Given a system whose state is determined by the generalized displacements x_j of a set of nodes, we define the flexibility coefficient f_{jk} as the deflection, in direction of x_j , due to the application of a unit force in correspondance of the displacement x_k .

Given a load vector $\mathbf{p} = \{p_k\}$, the displacementent x_i is

$$x_j = \sum f_{jk} p_k$$

or, in vector notation,

$$x = F p$$

The matrix $\mathbf{F} = [f_{jk}]$ is the *flexibility matrix*.

In general, the dynamic degrees of freedom correspond to the points where there is

- application of external forces and/or
- presence of inertial forces.

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural Matrices

Evaluation of Structural

Flexibility Matrix

Stiffness Matrix
Mass Matrix
Damping Matrix
Geometric Stiffnes
External Loading

Choice of Property Formulation

Example

The dynamical system

 \triangle x_1

The degrees of freedom

and due to $p_2 = 1$.

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural Matrices

Evaluation of Structural

Matrices
Flexibility Matrix

Example
Stiffness Matrix
Mass Matrix
Damping Matrix
Geometric Stiffnes

External Loading Choice of Property Formulation

Elastic Forces

Momentarily disregarding inertial effects, each node shall be in equilibrium under the action of the external forces and the elastic forces, hence taking into accounts all the nodes, all the external forces and all the elastic forces it is possible to write the vector equation of equilibrium

$$p = f_S$$

and, substituting in the previos vector expression of the displacements

$$\mathbf{x} = \mathbf{F} \, \mathbf{f}_{S}$$

Structural Matrices

Giacomo Boffi

Introductory

Structura

Evaluation of Structural

Flexibility Matrix

Example Stiffness Matrix

Mass Matrix
Damping Matrix
Geometric Stiffnes
External Loading

Choice of Property Formulation

Stiffness Matrix

The *stiffness matrix* K can be simply defined as the inverse of the flexibility matrix F,

$$K = F^{-1}$$
.

To understand our formal definition, we must consider an unary vector of displacements,

$$e^{(i)} = \{\delta_{ij}\}, \qquad j = 1, \dots, N,$$

and the vector of nodal forces \mathbf{k}_i that, applied to the structure, produces the displacements $\mathbf{e}^{(i)}$

$$F k_i = e^{(i)}, \qquad i = 1, \dots, N.$$

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural Matrices

Evaluation of Structural

Flexibility Matrix

iffness Matrix

Strain Energy
Symmetry
Direct Assemblage
Example
Mass Matrix
Damping Matrix

Geometric Stiffness

External Loading
Choice of
Property
Formulation

Stiffness Matrix

Collecting all the ordered ${\bf e}^{(i)}$ in a matrix ${\bf E}$, it is clear that ${\bf E}\equiv {\bf I}$ and we have, writing all the equations at once,

$$\mathbf{F}\left[\mathbf{k}_{i}\right]=\left[\mathbf{e}^{(i)}\right]=\mathbf{E}=\mathbf{I}.$$

Collecting the ordered force vectors in a matrix $m{K} = \left\lceil ec{k_i}
ight
ceil$ we have

$$\mathbf{F}\mathbf{K} = \mathbf{I}, \qquad \Rightarrow \quad \mathbf{K} = \mathbf{F}^{-1},$$

giving a physical interpretation to the columns of the stiffness matrix. Finally, writing the nodal equilibrium, we have

$$p = f_S = K x$$
.

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Flexibility Matrix Example

Stiffness Matrix

Symmetry
Direct Assemblage

Example

Mass Matrix

Damping Matrix

Geometric Stiffness

External Loading

Strain Energy

The elastic strain energy V can be written in terms of displacements and external forces,

$$V = \frac{1}{2} \boldsymbol{p}^T \boldsymbol{x} = \frac{1}{2} \begin{cases} \boldsymbol{p}^T \underbrace{\boldsymbol{F} \boldsymbol{p}}_{\boldsymbol{x}}, \\ \underbrace{\boldsymbol{x}^T \boldsymbol{K}}_{\boldsymbol{p}^T} \boldsymbol{x}. \end{cases}$$

Because the elastic strain energy of a stable system is always greater than zero, K is a positive definite matrix.

On the other hand, for an unstable system, think of a compressed beam, there are displacement patterns that are associated to zero strain energy.

Structural

Giacomo Boffi

Structural

Flexibility Matrix

Stiffness Matrix

Strain Energy

Direct Assemblag Example Mass Matrix Damping Matrix Geometric Stiffnes

Choice of Formulation

Symmetry

Two sets of loads p^A and p^B are applied, one after the other, to an elastic system; the work done is

$$V_{AB} = \frac{1}{2} \boldsymbol{p}^{AT} \boldsymbol{x}^A + \boldsymbol{p}^{AT} \boldsymbol{x}^B + \frac{1}{2} \boldsymbol{p}^{BT} \boldsymbol{x}^B.$$

If we revert the order of application the work is

$$V_{BA} = rac{1}{2} {oldsymbol{
ho}^B}^{\mathsf{T}} {oldsymbol{x}^B} + {oldsymbol{
ho}^B}^{\mathsf{T}} {oldsymbol{x}^A} + rac{1}{2} {oldsymbol{
ho}^A}^{\mathsf{T}} {oldsymbol{x}^A}.$$

The total work being independent of the order of loading,

$$\boldsymbol{p}^{AT}\boldsymbol{x}^{B}=\boldsymbol{p}^{BT}\boldsymbol{x}^{A}.$$

Structural

Giacomo Boffi

Flexibility Matrix Example

Stiffness Matrix Strain Energy

Symmetry
Direct Assemblage Example

Mass Matrix Damping Matrix Geometric Stiffnes External Loading

Choice of Property

Symmetry, 2

Expressing the displacements in terms of \mathbf{F} ,

$$\boldsymbol{\rho}^{A}{}^{T}\boldsymbol{F}\,\boldsymbol{\rho}^{B}=\boldsymbol{\rho}^{B}{}^{T}\boldsymbol{F}\boldsymbol{\rho}^{A},$$

both terms are scalars so we can write

$$\mathbf{p}^{A^T} \mathbf{F} \, \mathbf{p}^B = \left(\mathbf{p}^{B^T} \mathbf{F} \mathbf{p}^A \right)^T = \mathbf{p}^{A^T} \mathbf{F}^T \, \mathbf{p}^B.$$

Because this equation holds for every p, we conclude that

$$\mathbf{F} = \mathbf{F}^{\mathsf{T}}$$
.

The inverse of a symmetric matrix is symmetric, hence

$$K = K^T$$
.

Structural

Giacomo Boffi

Evaluation of

Flexibility Matrix Example

Stiffness Matrix Strain Energy

Symmetry
Direct Assemblage Evample

Mass Matrix

Damping Matri Geometric Stiffnes External Loading

Property Formulation

A practical consideration

For the kind of *structures* we mostly deal with in our examples, problems, exercises and assignments, that is *simple structures*, it is usually convenient to compute first the flexibility matrix applying the Principle of Virtual Displacements and later the stiffness matrix, using inversion,

$$\mathbf{K} = \mathbf{F}^{-1}$$
.

On the other hand, the PVD approach cannot work in practice for *real structures*, because the number of degrees of freedom necessary to model the structural behaviour exceeds our ability to apply the PVD...

The stiffness matrix for large, complex structures to construct different methods required are.

The most common procedure to compute the matrices that describe the behaviour of a complex system is the *Finite Element Method*, or *FEM*.

Structural

Giacomo Boffi

Introductory

Structura

Evaluation o Structural

Flexibility Matrix
Example
Stiffness Matrix

Strain Energy

Direct Assemblag

Mass Matrix
Damping Matrix
Geometric Stiffness

Choice of Property Formulation

FEM

The procedure to compute the stiffness matrix can be sketched in the following terms:

- ▶ the structure is subdivided in non-overlapping portions, the *finite elements*, bounded by *nodes*, connected by the same nodes,
- ▶ the state of the structure can be described in terms of a vector **x** of generalized *nodal displacements*,
- ▶ there is a mapping between element and structure *DOF* s, $i_{el} \mapsto r$,
- ▶ the *element stiffness matrix*, **K**_{el} establishes a linear relation between an element's nodal displacements and its nodal forces,
- ▶ for each FE, all local k_{ij} 's are contributed to the global stiffness k_{rs} 's, with $i \mapsto r$ and $j \mapsto s$, taking in due consideration differences between local and global systems of reference.

Note that in the r-th global equation of equilibrium we have internal forces caused by the nodal displacements of the FE that have nodes $i_{\rm el}$ such that $i_{\rm el} \mapsto r$, thus implying that global K is a sparse matrix.

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural

Evaluation of Structural Matrices Flexibility Matrix

Example Stiffness Matrix Strain Energy

Direct Assemblage

Example
Mass Matrix
Damping Matrix
Geometric Stiffness
External Loading

Choice of Property Formulation

Example

Consider a 2-D inextensible beam element, that has 4 *DOF*, namely two transverse end displacements x_1 , x_2 and two end rotations, x_3 , x_4 .

The element stiffness is computed using 4 shape functions ϕ_i , the transverse displacement being $v(s) = \sum_i \phi_i(s) x_i$, $0 \le s \le L$, the different ϕ_i are such all end displacements or rotation are zero, except the one corresponding to index i.

The shape functions for a beam are

$$\begin{aligned} \phi_1(s) &= 1 - 3\left(\frac{s}{L}\right)^2 + 2\left(\frac{s}{L}\right)^3, & \phi_2(s) &= 3\left(\frac{s}{L}\right)^2 - 2\left(\frac{s}{L}\right)^3, \\ \phi_3(s) &= \left(\frac{s}{L}\right) - 2\left(\frac{s}{L}\right)^2 + \left(\frac{s}{L}\right)^3, & \phi_4(s) &= -\left(\frac{s}{L}\right)^2 + \left(\frac{s}{L}\right)^3. \end{aligned}$$

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural

Evaluation

Matrices
Flexibility Matrix
Example
Stiffness Matrix
Strain Energy

Symmetry
Direct Assemblag

Example Mass Matrix

Damping Matrix
Geometric Stiffnes
External Loading

Example, 2

The element stiffness coefficients can be computed using, what else, the PVD: we compute the external virtual work done by a virtual displacement δx_i and the force due to a unit displacement x_j , that is k_{ij} ,

$$\delta W_{\rm ext} = \delta x_i k_{ii}$$

the virtual internal work is the work done by the variation of the curvature, $\delta x_i \phi_i''(s)$ by the bending moment associated with a unit x_j , $\phi_i''(s)EJ(s)$,

$$\delta W_{\rm int} = \int_0^L \delta x_i \, \phi_i''(s) \phi_j''(s) EJ(s) \, \mathrm{d}s.$$

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural

Evaluation of Structural

Matrices
Flexibility Matrix
Example
Stiffness Matrix

Strain Energy
Symmetry
Direct Assemblage

Direct Assemblage

Example

Mass Matrix

Damping Matrix

Geometric Stiffness

External Loading

Choice of Property Formulation

Example, 3

The equilibrium condition is the equivalence of the internal and external virtual works, so that simplifying δx_i we have

$$k_{ij} = \int_0^L \phi_i''(s)\phi_j''(s)EJ(s)\,\mathrm{d}s.$$

For EJ = const,

$$\mathbf{f}_{S} = \frac{EJ}{L^{3}} \begin{bmatrix} 12 & -12 & 6L & 6L \\ -12 & 12 & -6L & -6L \\ 6L & -6L & 4L^{2} & 2L^{2} \\ 6L & -6L & 2L^{2} & 4L^{2} \end{bmatrix} \mathbf{x}$$

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural

Evaluation of Structural

Flexibility Matrix

Strain Energy

Symmetry
Direct Assemblage

Example Mass Matrix

Damping Matrix Geometric Stiffness External Loading

Choice of Property

Blackboard Time!

Structural Matrices Giacomo Boffi

Introductory

Structural

Evaluation of

Structural Matrices Flexibility Matrix Example

Strain Energy

Symmetry
Direct Assemblage
Example

Example Mass Matrix

Mass Matrix
Damping Matrix
Geometric Stiffness
External Loading

Mass Matrix

The mass matrix maps the nodal accelerations to nodal inertial forces, and the most common assumption is to concentrate all the masses in nodal point masses, without rotational inertia, computed *lumping* a fraction of each element mass (or a fraction of the supported mass) on all its bounding nodes.

This procedure leads to a so called *lumped* mass matrix, a diagonal matrix with diagonal elements greater than zero for all the translational degrees of freedom and diagonal elements equal to zero for angular degrees of freedom.

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural

Evaluation of Structural

Flexibility Matrix

Example Stiffness Matrix

Mass Matrix

Consistent Mass Matrix Discussion

Damping Matrix
Geometric Stiffness
External Loading

Choice of Property Formulation

Mass Matrix

The mass matrix is definite positive *only* if all the structure *DOF*'s are translational degrees of freedom, otherwise *M* is semi-definite positive and the eigenvalue procedure is not directly applicable. This problem can be overcome either by using a *consistent* mass matrix or using the *static condensation* procedure.

Structural

Giacomo Boffi

Introductory Remarks

Structural

Evaluation of Structural

Flexibility Matrix Example Stiffness Matrix

Stiffness Mat Mass Matrix

Consistent Mass Matrix

Discussion

Damping Matrix

Geometric Stiffness External Loading

Choice of Property Formulation

Consistent Mass Matrix

A consistent mass matrix is built using the rigorous *FEM* procedure, computing the nodal reactions that equilibrate the distributed inertial forces that develop in the element due to a linear combination of inertial forces.

Using our beam example as a reference, consider the inertial forces associated with a single nodal acceleration \ddot{x}_j , $f_{1,j}(s) = m(s)\phi_j(s)\ddot{x}_j$ and denote with $m_{ij}\ddot{x}_j$ the reaction associated with the *i*-nth degree of freedom of the element, by the PVD

$$\delta x_i m_{ij} \ddot{x}_j = \int \delta x_i \phi_i(s) m(s) \phi_j(s) ds \ddot{x}_j$$

simplifying

$$m_{ij} = \int m(s)\phi_i(s)\phi_j(s) ds.$$

For $m(s) = \overline{m} = \text{const.}$

$$\mathbf{f}_{1} = \frac{\overline{m}L}{420} \begin{bmatrix} 156 & 54 & 22L & -13L \\ 54 & 156 & 13L & -22L \\ 22L & 13L & 4L^{2} & -3L^{2} \\ -13L & -22L & -3L^{2} & 4L^{2} \end{bmatrix} \ddot{\mathbf{x}}$$

Structural Matrices

Giacomo Boffi

Introductory

Structural

Evaluation o Structural

Flexibility Matrix Example

Example Stiffness Matrix Mass Matrix

Consistent Mass Matrix

Damping Matrix
Geometric Stiffness
External Loading

Consistent Mass Matrix, 2

Pro

- some convergence theorem of FEM theory holds only if the mass matrix is consistent,
- slightly more accurate results,
- no need for static condensation.

Contra

- ▶ **M** is no more diagonal, heavy computational aggravation,
- static condensation is computationally beneficial, inasmuch it reduces the global number of degrees of freedom.

Structural Matrices

Giacomo Boffi

Introductory

Structura

Evaluation of Structural

Flexibility Matrix
Example
Stiffness Matrix
Mass Matrix

Consistent Mass Matrix Discussion

Damping Matrix
Geometric Stiffness
External Loading

Choice of Property

Damping Matrix

For each element $c_{ij} = \int c(s)\phi_i(s)\phi_j(s) ds$ and the damping matrix C can be assembled from element contributions.

However, using the FEM $\mathbf{C}^{\star} = \mathbf{\Psi}^T \mathbf{C} \mathbf{\Psi}$ is not diagonal and the modal equations are no more uncoupled!

The alternative is to write directly the global damping matrix, in terms of the underdetermined coefficients \mathfrak{c}_{b} ,

$$oldsymbol{\mathcal{C}} = \sum_b \mathfrak{c}_b oldsymbol{\mathcal{M}} \left(oldsymbol{\mathcal{M}}^{-1} oldsymbol{\mathcal{K}}
ight)^b.$$

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices Flexibility Matrix Example Stiffness Matrix Mass Matrix

Damping Matrix
Example
Geometric Stiffness

Choice of Property

Damping Matrix

With our definition of \boldsymbol{C} ,

$$\mathbf{C} = \sum_{b} \mathbf{c}_{b} \mathbf{M} \left(\mathbf{M}^{-1} \mathbf{K} \right)^{b},$$

assuming normalized eigenvectors, we can write the individual component of ${m C}^\star = {m \Psi}^T {m C} \, {m \Psi}$

$$c_{ij}^{\star} = \psi_i^{\mathsf{T}} \mathbf{C} \, \psi_j = \delta_{ij} \sum_b \mathfrak{c}_b \omega_j^{2b}$$

due to the additional orthogonality relations, we recognize that now ${\pmb C}^{\star}$ is a diagonal matrix.

Introducing the modal damping C_i we have

$$C_j = \boldsymbol{\psi}_j^T \boldsymbol{C} \, \boldsymbol{\psi}_j = \sum_b \mathfrak{c}_b \omega_j^{2b} = 2\zeta_j \omega_j$$

and we can write a system of linear equations in the \mathfrak{c}_b .

Structural Matrices

Giacomo Boffi

Introductor Remarks

> Structural Matrices

Evaluation of Structural Matrices Flexibility Matrix

Example Stiffness Matrix Mass Matrix

Damping Matrix
Example
Geometric Stiffness
External Loading

Example

We want a fixed, 5% damping ratio for the first three modes, taking note that the modal equation of motion is

$$\ddot{q}_i + 2\zeta_i\omega_i\dot{q}_i + \omega_i^2q_i = p_i^*$$

Using

$$\mathbf{C} = \mathfrak{c}_0 \mathbf{M} + \mathfrak{c}_1 \mathbf{K} + \mathfrak{c}_2 \mathbf{K} \mathbf{M}^{-1} \mathbf{K}$$

we have

$$2 \times 0.05 \begin{Bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{Bmatrix} = \begin{bmatrix} 1 & \omega_1^2 & \omega_1^4 \\ 1 & \omega_2^2 & \omega_2^4 \\ 1 & \omega_3^2 & \omega_3^4 \end{bmatrix} \begin{Bmatrix} \mathfrak{c}_0 \\ \mathfrak{c}_1 \\ \mathfrak{c}_2 \end{Bmatrix}$$

Solving for the c's and substituting above, the resulting damping matrix is orthogonal to every eigenvector of the system, for the first three modes, leads to a modal damping ratio that is equal to 5%.

Structural Matrices

Giacomo Boffi

Introductory

Structural

Evaluation of Structural

Matrices
Flexibility Matrix

Stiffness Matrix

Mass Matrix

Damping Matri

Geometric Stiffnes

Choice of Property Formulation

Example

Computing the coefficients c_0 , c_1 and c_2 to have a 5% damping at frequencies $\omega_1=2,~\omega_2=5$ and $\omega_3=8$ we have $c_0=1200/9100,~c_1=159/9100$ and $c_2=-1/9100$.

Writing $\zeta(\omega)=\frac{1}{2}\left(\frac{\mathfrak{c}_0}{\omega}+\mathfrak{c}_1\omega+\mathfrak{c}_2\omega^3\right)$ we can plot the above function, along with its two term equivalent $(\mathfrak{c}_0=10/70,\mathfrak{c}_1=1/70)$.

Negative damping? No, thank you: use only an even number of terms.

Structural

Giacomo Boffi

Introductory Remarks

Structural

Evaluation of

Flexibility Matrix

Example Stiffness Matr

Mass Matrix Damping Matrix

Example Geometric Stiffnes

External Loading

Choice of Property Formulation

Geometric Stiffness

A common assumption is based on a linear approximation, for a beam element

 $\begin{array}{c|cccc}
N & f_1 & f_2 & N \\
\hline
 & X_1 & X_2 & X_2 \\
\hline
 & f_2 = -f_1 & \\
f_1 L = N(x_2 - x_1) & & & \\
\end{array}$

It is possible to compute the geometrical stiffness matrix using *FEM*, shape functions and PVD.

$$k_{\mathsf{G},ij} = \int N(s)\phi_i'(s)\phi_j'(s)\,\mathrm{d}s,$$

for constant N

$$K_{G} = \frac{N}{30L} \begin{bmatrix} 36 & -36 & 3L & 3L \\ -36 & 36 & -3L & -3L \\ 3L & -3L & 4L^{2} & -L^{2} \\ 3L & -3L & -L^{2} & 4L^{2} \end{bmatrix}$$

Structural Matrices

Giacomo Boffi

Introductor

Structural

Evaluation of

Flexibility Matrix Example

Mass Matrix Damping Matrix

Geometric Stiffness

External Loading

External Loadings

Structural

Giacomo Boffi

Structural

Structural

Flexibility Matrix

Stiffness Matrix Mass Matrix Damping Matrix

Geometric Stiffnes External Loading

Choice of Property

Following the same line of reasoning that we applied to find nodal inertial forces, by the PVD and the use of shape functions we have

 $p_i(t) = \int p(s,t)\phi_i(s) ds.$

For a constant, uniform load $p(s,t) = \overline{p} = \text{const}$, applied on a beam element,

 $\boldsymbol{p} = \overline{p}L\left\{\frac{1}{2} \quad \frac{1}{2} \quad \frac{L}{12} \quad -\frac{L}{12}\right\}^T$

Choice of Property Formulation

Static Condensation Example

Choice of Property Formulation

Structural

Giacomo Boffi

Remarks

Evaluation of Structural

Choice of Formulation

Static Cor

Simplified Approach

Some structural parameter is approximated, only translational DOF's are retained in dynamic analysis.

Consistent Approach

All structural parameters are computed according to the FEM, and all DOF's are retained in dynamic analysis.

If we choose a simplified approach, we must use a procedure to remove unneeded structural DOF's from the model that we use for the dynamic analysis.

Enter the Static Condensation Method.

Static Condensation

We have, from a *FEM* analysis, a stiffnes matrix that uses all nodal *DOF*'s, and from the lumped mass procedure a mass matrix were only translational (and maybe a few rotational) *DOF*'s are blessed with a non zero diagonal term.

In this case, we can always rearrange and partition the displacement vector \mathbf{x} in two subvectors: a) \mathbf{x}_A , all the DOF's that are associated with inertial forces and b) \mathbf{x}_B , all the remaining DOF's not associated with inertial forces.

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_A & \mathbf{x}_B \end{pmatrix}^T$$

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural

Evaluation of Structural

Choice of Property Formulation

Static Condensation

Static Condensation, 2

After rearranging the *DOF*'s, we must rearrange also the rows (equations) and the columns (force contributions) in the structural matrices, and eventually partition the matrices so that

$$egin{aligned} \left\{ egin{aligned} \mathbf{f}_I \\ \mathbf{0} \end{matrix}
ight\} &= egin{bmatrix} \mathbf{M}_{AA} & \mathbf{M}_{AB} \\ \mathbf{M}_{BA} & \mathbf{M}_{BB} \end{matrix}
ight] \left\{ egin{aligned} \ddot{\mathbf{x}}_A \\ \ddot{\mathbf{x}}_B \end{matrix}
ight\} \end{aligned} \ \mathbf{f}_S &= egin{bmatrix} \mathbf{K}_{AA} & \mathbf{K}_{AB} \\ \mathbf{K}_{BA} & \mathbf{K}_{BB} \end{matrix}
ight] \left\{ egin{aligned} \mathbf{x}_A \\ \mathbf{x}_B \end{matrix}
ight\} \end{aligned}$$

with

$$\mathbf{M}_{BA} = \mathbf{M}_{AB}^T = \mathbf{0}, \quad \mathbf{M}_{BB} = \mathbf{0}, \quad \mathbf{K}_{BA} = \mathbf{K}_{AB}^T$$

Finally we rearrange the loadings vector and write...

Structural Matrices

Giacomo Boffi

Introductory Remarks

Structural

Evaluation of Structural

Choice of Property

Static Condensation

Static Condensation, 3

... the equation of dynamic equilibrium,

$$\mathbf{p}_{A} = \mathbf{M}_{AA}\ddot{\mathbf{x}}_{A} + \mathbf{M}_{AB}\ddot{\mathbf{x}}_{B} + \mathbf{K}_{AA}\mathbf{x}_{A} + \mathbf{K}_{AB}\mathbf{x}_{B}
\mathbf{p}_{B} = \mathbf{M}_{BA}\ddot{\mathbf{x}}_{A} + \mathbf{M}_{BB}\ddot{\mathbf{x}}_{B} + \mathbf{K}_{BA}\mathbf{x}_{A} + \mathbf{K}_{BB}\mathbf{x}_{B}$$

The terms in red are zero, so we can simplify

$$egin{aligned} oldsymbol{M}_{AA}\ddot{oldsymbol{x}}_A + oldsymbol{K}_{AA}oldsymbol{x}_A + oldsymbol{K}_{AB}oldsymbol{x}_B = oldsymbol{p}_B \ oldsymbol{K}_{BA}oldsymbol{x}_A + oldsymbol{K}_{BB}oldsymbol{x}_B = oldsymbol{p}_B \end{aligned}$$

solving for x_B in the 2nd equation and substituting

$$oldsymbol{x}_B = oldsymbol{\mathcal{K}}_{BB}^{-1} oldsymbol{p}_B - oldsymbol{\mathcal{K}}_{BB}^{-1} oldsymbol{\mathcal{K}}_{BA} oldsymbol{x}_A \ oldsymbol{p}_A - oldsymbol{\mathcal{K}}_{AB} oldsymbol{\mathcal{K}}_{BB}^{-1} oldsymbol{p}_B = oldsymbol{M}_{AA} \ddot{oldsymbol{x}}_A + ig(oldsymbol{\mathcal{K}}_{AA} - oldsymbol{\mathcal{K}}_{AB} oldsymbol{\mathcal{K}}_{BA}^{-1} oldsymbol{\mathcal{K}}_{BA}ig) oldsymbol{x}_A$$

Structural

Giacomo Boffi

Introductor

Structura

Evaluation of Structural

Choice of Property

Static Condensation

Static Condensation, 4

Structural

Giacomo Boffi

Structural

Property Formulation

Static Condensa

Going back to the homogeneous problem, with obvious positions we can write

$$\left(\overline{\mathbf{K}} - \omega^2 \overline{\mathbf{M}}\right) \psi_A = \mathbf{0}$$

but the ψ_A are only part of the structural eigenvectors, because in essentially every application we must consider also the other DOF's, so we write

$$\psi_i = egin{cases} \psi_{A,i} \ \psi_{B,i} \end{pmatrix}, ext{ with } \psi_{B,i} = oldsymbol{K}_{BB}^{-1} oldsymbol{K}_{BA} \psi_{A,i}$$

Example

$\mathbf{K} = \frac{2EJ}{L^{3}} \begin{bmatrix} 12 & 3L & 3L \\ 3L & 6L^{2} & 2L^{2} \\ 3L & 2L^{2} & 6L^{2} \end{bmatrix}$

$$\mathbf{K} = \frac{2EJ}{L^3} \begin{bmatrix} 12 & 3L & 3L \\ 3L & 6L^2 & 2L^2 \\ 3L & 2L^2 & 6L^2 \end{bmatrix}$$

Disregarding the factor $2EJ/L^3$,

$$\mathbf{K}_{BB} = L^2 \begin{bmatrix} 6 & 2 \\ 2 & 6 \end{bmatrix}, \mathbf{K}_{BB}^{-1} = \frac{1}{32L^2} \begin{bmatrix} 6 & -2 \\ -2 & 6 \end{bmatrix}, \mathbf{K}_{AB} = \begin{bmatrix} 3L & 3L \end{bmatrix}$$

The matrix $\overline{\mathbf{K}}$ is

$$\overline{\mathbf{K}} = \frac{2EJ}{L^3} \left(12 - \mathbf{K}_{AB} \mathbf{K}_{BB}^{-1} \mathbf{K}_{AB}^T \right) = \frac{39EJ}{2L^3}$$

Structural

Giacomo Boffi

Property Formulation