	Structural Matrices Giacomo Boffi
Structural Matrices in MDOF Systems	Introductory Remarks Structural Matrices
Giacomo Boffi http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March 22, 2018	Evaluation of Structural Matrices Choice of Property Formulation

Outline	Structural Matrices
Introductory Remarks	Giacomo Boffi
Structural Matrices	$\underset{\substack{\text { Introducta } \\ \text { Remarks }}}{ }$
Orthogonality Relationships	Structural
Additional Orthogonality Relationships	Matrices
Evaluation of Structural Matrices	(sturctiral
Flexibility Matrix	Choice of
Example	Property Formulation
Stiffness Matrix	
Mass Matrix	
Damping Matrix	
Geometric Stiffness	
External Loading	
Choice of Property Formulation	
Static Condensation	
Example	

Structura Matrices

Today we will study the properties of structural matrices, that is the operators that relate the vector of system coordinates \boldsymbol{x} and its time derivatives $\dot{\boldsymbol{x}}$ and $\ddot{\boldsymbol{x}}$ to the forces acting on the system nodes, $\boldsymbol{f}_{\mathrm{S}}, \boldsymbol{f}_{\mathrm{D}}$ and $\boldsymbol{f}_{\mathrm{f}}$, respectively.

In the end, we will see again the solution of a MDOF problem by superposition, and in general today we will revisit many of the subjects of our previous class.

Introductory Remarks

Structural Matrices

Orthogonality Relationships
Additional Orthogonality Relationships

Evaluation of Structural Matrices

Choice of Property Formulation

Structural Matrices

We already met the mass and the stiffness matrix, \boldsymbol{M} and \boldsymbol{K}, and tangentially we introduced also the dampig matrix \boldsymbol{C}.
We have seen that these matrices express the linear relation that holds between the vector of system coordinates \boldsymbol{x} and its time derivatives $\dot{\boldsymbol{x}}$ and $\ddot{\boldsymbol{x}}$ to the forces acting on the system nodes, $\boldsymbol{f}_{\mathrm{S}}, \boldsymbol{f}_{\mathrm{D}}$ and $\boldsymbol{f}_{\boldsymbol{f}}$, elastic, damping and inertial force vectors.

$$
\begin{aligned}
\boldsymbol{M} \ddot{\boldsymbol{x}}+\boldsymbol{C} \dot{\boldsymbol{x}}+\boldsymbol{K} \boldsymbol{x} & =\boldsymbol{p}(t) \\
\boldsymbol{f}_{\mathbf{I}}+\boldsymbol{f}_{\mathrm{D}}+\boldsymbol{f}_{\mathrm{S}} & =\boldsymbol{p}(t)
\end{aligned}
$$

Also, we know that \boldsymbol{M} and \boldsymbol{K} are symmetric and definite positive, and that it is possible to uncouple the equation of motion expressing the system coordinates in terms of the eigenvectors, $\boldsymbol{x}(t)=\sum q_{i} \boldsymbol{\psi}_{i}$, where the q_{i} are the modal coordinates and the eigenvectors ψ_{i} are the non-trivial solutions to the equation of free vibrations,

$$
\left(\boldsymbol{K}-\omega^{2} \boldsymbol{M}\right) \psi=\mathbf{0}
$$

Free Vibrations

From the homogeneous, undamped problem

$$
M \ddot{x}+K x=0
$$

introducing separation of variables

$$
\boldsymbol{x}(t)=\boldsymbol{\psi}(A \sin \omega t+B \cos \omega t)
$$

we wrote the homogeneous linear system

$$
\left(\boldsymbol{K}-\omega^{2} \boldsymbol{M}\right) \boldsymbol{\psi}=\mathbf{0}
$$

whose non-trivial solutions ψ_{i} for ω_{i}^{2} such that $\left\|\boldsymbol{K}-\omega_{i}^{2} \boldsymbol{M}\right\|=0$ are the eigenvectors.
It was demonstrated that, for each pair of distint eigenvalues ω_{r}^{2} and ω_{s}^{2}, the corresponding eigenvectors obey the ortogonality condition,

$$
\boldsymbol{\psi}_{s}^{T} \boldsymbol{M} \boldsymbol{\psi}_{r}=\delta_{r s} M_{r}, \quad \boldsymbol{\psi}_{s}^{T} \boldsymbol{K} \psi_{r}=\delta_{r s} \omega_{r}^{2} M_{r}
$$

Additional Orthogonality Relationships

Starting from the equation of free vibrations (EOFV)

$$
\boldsymbol{K} \psi_{s}=\omega_{s}^{2} \boldsymbol{M} \psi_{s},
$$

pre-multiplying both members by $\psi_{r}^{T} K M^{-1}$ we have

$$
\boldsymbol{\psi}_{r}^{T} \boldsymbol{K} \boldsymbol{M}^{-1} \boldsymbol{K} \psi_{s}=\omega_{s}^{2} \psi_{r}^{T} \boldsymbol{K} \psi_{s}=\delta_{r s} \omega_{r}^{4} M_{r} .
$$

Pre-multiplying both members of the EOFV by $\boldsymbol{\psi}_{r}^{T} \boldsymbol{K} \boldsymbol{M}^{-1} \boldsymbol{K} \boldsymbol{M}^{-1}$ we have (compare with our previous result)

$$
\boldsymbol{\psi}_{r}^{T} \boldsymbol{K} \boldsymbol{M}^{-1} \boldsymbol{K} \boldsymbol{M}^{-1} \boldsymbol{K} \psi_{s}=\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \boldsymbol{K} \boldsymbol{M}^{-1} \boldsymbol{K} \psi_{s}=\delta_{r s} \omega_{r}^{6} M_{r}
$$

and, generalizing,

$$
\boldsymbol{\psi}_{r}^{T}\left(\boldsymbol{K} \boldsymbol{M}^{-1}\right)^{b} \boldsymbol{K} \boldsymbol{\psi}_{s}=\delta_{r s}\left(\omega_{r}^{2}\right)^{b+1} M_{r}
$$

Additional Relationships, 2

Structural Matrices

Let's rearrange the equation of free vibrations

$$
\boldsymbol{M} \psi_{s}=\omega_{s}^{-2} \boldsymbol{K} \psi_{s}
$$

Pre-multiplying both members by $\boldsymbol{\psi}_{r}^{T} \boldsymbol{M} \boldsymbol{K}^{-1}$ we have

$$
\boldsymbol{\psi}_{r}^{T} \boldsymbol{M} K^{-1} \boldsymbol{M} \psi_{s}=\omega_{s}^{-2} \psi_{r}^{T} \boldsymbol{M} \psi_{s}=\delta_{r s} \frac{M_{s}}{\omega_{s}^{2}}
$$

Pre-multiplying both members of the EOFV by $\boldsymbol{\psi}_{r}^{T}\left(\boldsymbol{M K}^{-1}\right)^{2}$ we have

$$
\boldsymbol{\psi}_{r}^{T}\left(\boldsymbol{M K}^{-1}\right)^{2} \boldsymbol{M} \boldsymbol{\psi}_{s}=\omega_{s}^{-2} \boldsymbol{\psi}_{r}^{T} \boldsymbol{M} \boldsymbol{K}^{-1} \boldsymbol{M} \boldsymbol{\psi}_{s}=\delta_{r s} \frac{M_{s}}{\omega_{s}^{4}}
$$

and, generalizing,

$$
\psi_{r}^{T}\left(\boldsymbol{M K}^{-1}\right)^{b} \boldsymbol{M} \psi_{s}=\delta_{r s} \frac{M_{s}}{\omega_{s}^{2 b}}
$$

Additional Relationships, 3

Structural Matrices

Defining $X^{(k)}=\boldsymbol{M}\left(\boldsymbol{M}^{-1} \boldsymbol{K}\right)^{k}$ we have

$$
\begin{cases}\psi_{r}^{\top} X^{(0)} \psi_{s}=\boldsymbol{\psi}_{r}^{T} \boldsymbol{M} \psi_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right){ }^{0} M_{s} \\ \psi_{r}^{T} X^{(1)} \psi_{s}=\boldsymbol{\psi}_{r}^{T} \boldsymbol{K} \psi_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right) M_{s}^{1} M_{s} \\ \psi_{r}^{T} X^{(2)} \psi_{s}=\psi_{r}^{T}\left(\boldsymbol{K} \boldsymbol{M}^{-1}\right)^{1} \boldsymbol{K} \psi_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{2} M_{s} \\ \cdots & \\ \psi_{r}^{\top} X^{(n)} \psi_{s}=\psi_{r}^{T}\left(\boldsymbol{K} M^{-1}\right)^{n-1} \boldsymbol{K} \psi_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{n} M_{s}\end{cases}
$$

Observing that $\left(\boldsymbol{M}^{-1} \boldsymbol{K}\right)^{-1}=\left(\boldsymbol{K}^{-1} \boldsymbol{M}\right)^{1}$

$$
\left\{\begin{array}{l}
\psi_{r}^{\top} X^{(-1)} \psi_{s}=\psi_{r}^{\top}\left(\boldsymbol{M} K^{-1}\right)^{1} \boldsymbol{M} \psi_{s}=\delta_{r s}\left(\omega_{s}^{2}\right)^{-1} M_{s} \\
\cdots \\
\psi_{r}^{\top} X^{(-n)} \psi_{s}=\psi_{r}^{\top}\left(\boldsymbol{M} K^{-1}\right)^{n} \boldsymbol{M} \psi_{s}=\delta_{r s}\left(\omega_{s}^{2}\right)^{-n} M_{s}
\end{array}\right.
$$

We can conclude that we the eigenvectors are orthogonal with respect to an infinite number of matrices $\boldsymbol{X}^{(k)}(\boldsymbol{M}$ and \boldsymbol{K} being two particular cases):

$$
\boldsymbol{\psi}_{r}^{T} X^{(k)} \boldsymbol{\psi}_{s}=\delta_{r s} \omega_{s}^{2 k} M_{s} \quad \text { for } k=-\infty, \ldots, \infty
$$

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Flexibility Matrix
Example
Stiffness Matrix
Mass Matrix
Damping Matrix
Geometric Stiffness
External Loading

Choice of Property Formulation

Flexibility

Structural Matrices

Given a system whose state is determined by the generalized displacements x_{j} of a set of nodes, we define the flexibility coefficient $f_{j k}$ as the deflection, in direction of x_{j}, due to the application of a unit force in correspondance of the displacement x_{k}.
Given a load vector $\boldsymbol{p}=\left\{p_{k}\right\}$, the displacementent x_{j} is

$$
x_{j}=\sum f_{j k} p_{k}
$$

or, in vector notation,

$$
x=F p
$$

The matrix $\boldsymbol{F}=\left[f_{j k}\right]$ is the flexibility matrix.
In general, the dynamic degrees of freedom correspond to the points where there is

- application of external forces and/or
- presence of inertial forces.

Introductory
Remarks
Structural Matrices

Evaluation of
Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Mass Matrix

Example

Structural Matrices

Elastic Forces

Momentarily disregarding inertial effects, each node shall be in equilibrium under the action of the external forces and the elastic forces, hence taking into accounts all the nodes, all the external forces and all the elastic forces it is possible to write the vector equation of equilibrium

$$
\boldsymbol{p}=\boldsymbol{f}_{\mathrm{S}}
$$

and, substituting in the previos vector expression of the displacements

$$
x=F f_{S}
$$

Stiffness Matrix

Structural Matrices

The stiffness matrix \boldsymbol{K} can be simply defined as the inverse of the flexibility matrix \boldsymbol{F},

$$
\boldsymbol{K}=\boldsymbol{F}^{-1}
$$

To understand our formal definition, we must consider an unary vector of displacements,

$$
\boldsymbol{e}^{(i)}=\left\{\delta_{i j}\right\}, \quad j=1, \ldots, N,
$$

and the vector of nodal forces \boldsymbol{k}_{i} that, applied to the structure, produces the displacements $\boldsymbol{e}^{(i)}$

$$
\boldsymbol{F} \boldsymbol{k}_{i}=\boldsymbol{e}^{(i)}, \quad i=1, \ldots, N
$$

Structural Matrices

Collecting all the ordered $\boldsymbol{e}^{(i)}$ in a matrix \boldsymbol{E}, it is clear that $\boldsymbol{E} \equiv \boldsymbol{I}$ and we have, writing all the equations at once,

$$
\boldsymbol{F}\left[\boldsymbol{k}_{i}\right]=\left[\boldsymbol{e}^{(i)}\right]=\boldsymbol{E}=\boldsymbol{I} .
$$

Collecting the ordered force vectors in a matrix $\boldsymbol{K}=\left[\vec{k}_{i}\right]$ we have

$$
\boldsymbol{F K}=\boldsymbol{I}, \quad \Rightarrow \quad \boldsymbol{K}=\boldsymbol{F}^{-1}
$$

giving a physical interpretation to the columns of the stiffness matrix.
Finally, writing the nodal equilibrium, we have

$$
\boldsymbol{p}=\boldsymbol{f}_{\mathrm{S}}=\boldsymbol{K} x
$$

The elastic strain energy V can be written in terms of displacements and external forces,

$$
V=\frac{1}{2} \boldsymbol{p}^{T} \boldsymbol{x}=\frac{1}{2}\left\{\begin{array}{l}
\boldsymbol{p}^{T} \underbrace{\boldsymbol{F} \boldsymbol{p}}_{x} \\
\underbrace{\boldsymbol{x}^{T} \boldsymbol{K} \boldsymbol{x}}_{\boldsymbol{p}^{\top}} .
\end{array}\right.
$$

Because the elastic strain energy of a stable system is always greater than zero, \boldsymbol{K} is a positive definite matrix.
On the other hand, for an unstable system, think of a compressed strain energy.

Structural Matrices

Two sets of loads \boldsymbol{p}^{A} and \boldsymbol{p}^{B} are applied, one after the other, to an elastic system; the work done is

$$
V_{A B}=\frac{1}{2} \boldsymbol{p}^{A^{T}} \boldsymbol{x}^{A}+\boldsymbol{p}^{A^{T}} \boldsymbol{x}^{B}+\frac{1}{2} \boldsymbol{p}^{B^{T}} \boldsymbol{x}^{B} .
$$

If we revert the order of application the work is

$$
V_{B A}=\frac{1}{2} \boldsymbol{p}^{B^{T}} \boldsymbol{x}^{B}+\boldsymbol{p}^{B^{T}} \boldsymbol{x}^{A}+\frac{1}{2} \boldsymbol{p}^{A^{T}} \boldsymbol{x}^{A} .
$$

The total work being independent of the order of loading,

$$
\boldsymbol{p}^{A^{T}} \boldsymbol{x}^{B}=\boldsymbol{p}^{B^{T}} \boldsymbol{x}^{A} .
$$

Symmetry, 2

Structural Matrices

Expressing the displacements in terms of \boldsymbol{F},

$$
\boldsymbol{p}^{A^{T}} \boldsymbol{F} \boldsymbol{p}^{B}=\boldsymbol{p}^{B^{T}} \boldsymbol{F} \boldsymbol{p}^{A},
$$

both terms are scalars so we can write

$$
\boldsymbol{p}^{A^{T}} \boldsymbol{F} \boldsymbol{p}^{B}=\left(\boldsymbol{p}^{B^{T}} \boldsymbol{F} \boldsymbol{p}^{A}\right)^{T}=\boldsymbol{p}^{A^{T}} \boldsymbol{F}^{T} \boldsymbol{p}^{B}
$$

Because this equation holds for every \boldsymbol{p}, we conclude that

$$
\boldsymbol{F}=\boldsymbol{F}^{T}
$$

The inverse of a symmetric matrix is symmetric, hence

$$
\boldsymbol{K}=\boldsymbol{K}^{\top}
$$

A practical consideration

For the kind of structures we mostly deal with in our examples, problems, exercises and assignments, that is simple structures, it is usually convenient to compute first the flexibility matrix applying the Principle of Virtual Displacements and later the stiffness matrix, using inversion,

$$
\boldsymbol{K}=\boldsymbol{F}^{-1}
$$

On the other hand, the PVD approach cannot work in practice for real structures, because the number of degrees of freedom necessary to model the structural behaviour exceeds our ability to apply the PVD...
The stiffness matrix for large, complex structures to construct different methods required are.
The most common procedure to compute the matrices that describe the behaviour of a complex system is the Finite Element Method, or FEM.

FEM

Structural
Matrices
The procedure to compute the stiffness matrix can be sketched in the following terms:

- the structure is subdivided in non-overlapping portions, the finite elements, bounded by nodes, connected by the same nodes,
- the state of the structure can be described in terms of a vector \boldsymbol{x} of generalized nodal displacements,
- there is a mapping between element and structure DOFs, $i_{\mathrm{el}} \mapsto r$,
- the element stiffness matrix, $\boldsymbol{K}_{\mathrm{el}}$ establishes a linear relation between an element's nodal displacements and its nodal forces,
- for each FE, all local $k_{i j}$'s are contributed to the global stiffness $k_{r s}$'s, with $i \mapsto r$ and $j \mapsto s$, taking in due consideration differences between local and global systems of reference.
Note that in the r-th global equation of equilibrium we have internal forces caused by the nodal displacements of the $F E$ that have nodes $i_{\text {el }}$ such that $i_{\text {el }} \mapsto r$, thus implying that global K is a sparse matrix.

Example

Structural
Matrices

Consider a 2-D inextensible beam element, that has 4 DOF, namely two transverse end displacements x_{1}, x_{2} and two end rotations, x_{3}, x_{4}.

The element stiffness is computed using 4 shape functions ϕ_{i}, the transverse displacement being $v(s)=\sum_{i} \phi_{i}(s) x_{i}, 0 \leq s \leq L$, the different ϕ_{i} are such all end displacements or rotation are zero, except the one corresponding to index i.
The shape functions for a beam are

$$
\begin{array}{ll}
\phi_{1}(s)=1-3\left(\frac{s}{L}\right)^{2}+2\left(\frac{s}{L}\right)^{3}, & \phi_{2}(s)=3\left(\frac{s}{L}\right)^{2}-2\left(\frac{s}{L}\right)^{3} \\
\phi_{3}(s)=\left(\frac{s}{L}\right)-2\left(\frac{s}{L}\right)^{2}+\left(\frac{s}{L}\right)^{3}, & \phi_{4}(s)=-\left(\frac{s}{L}\right)^{2}+\left(\frac{s}{L}\right)^{3}
\end{array}
$$

Example, 2

The element stiffness coefficients can be computed using, what else, the PVD: we compute the external virtual work done by a virtual displacement δx_{i} and the force due to a unit displacement x_{j}, that is $k_{i j}$,

$$
\delta W_{\mathrm{ext}}=\delta x_{i} k_{i j}
$$

the virtual internal work is the work done by the variation of the curvature, $\delta x_{i} \phi_{i}^{\prime \prime}(s)$ by the bending moment associated with a unit $x_{j}, \phi_{j}^{\prime \prime}(s) E J(s)$,

$$
\delta W_{\mathrm{int}}=\int_{0}^{L} \delta x_{i} \phi_{i}^{\prime \prime}(s) \phi_{j}^{\prime \prime}(s) E J(s) \mathrm{d} s .
$$

Example, 3

Structural Matrices

The equilibrium condition is the equivalence of the internal and external virtual works, so that simplifying δx_{i} we have

$$
k_{i j}=\int_{0}^{L} \phi_{i}^{\prime \prime}(s) \phi_{j}^{\prime \prime}(s) E J(s) \mathrm{d} s
$$

For $E J=$ const,

$$
\boldsymbol{f}_{\mathrm{S}}=\frac{E J}{L^{3}}\left[\begin{array}{cccc}
12 & -12 & 6 L & 6 L \\
-12 & 12 & -6 L & -6 L \\
6 L & -6 L & 4 L^{2} & 2 L^{2} \\
6 L & -6 L & 2 L^{2} & 4 L^{2}
\end{array}\right] x
$$

Mass Matrix	Structural Matrices
The mass matrix maps the nodal accelerations to nodal inertial forces, and the most common assumption is to concentrate all the masses in nodal point masses, without rotational inertia, computed lumping a fraction of each element mass (or a fraction of the supported mass) on all its bounding nodes. This procedure leads to a so called lumped mass matrix, a diagonal matrix with diagonal elements greater than zero for all the translational degrees of freedom and diagonal elements equal to zero for angular degrees of freedom.	Giacomo Boffi Introductory Remarks Structural Matrices Evaluation of Structural Matrices Flexibility Matrix Example Stiffness Matrix Mass Matrix Consistent Mass Matrix Discussion Damping Matrix Geometric Stiffness External Loading Choice of Property Formulation

Mass Matrix		Structural Matrices
Giacomo Boffi		

Consistent Mass Matrix

A consistent mass matrix is built using the rigorous FEM procedure, computing the nodal reactions that equilibrate the distributed inertial forces that develop in the element due to a linear combination of inertial forces.
Using our beam example as a reference, consider the inertial forces associated with a single nodal acceleration $\ddot{x}_{j}, f_{1, j}(s)=m(s) \phi_{j}(s) \ddot{x}_{j}$ and denote with $m_{i j} \ddot{x}_{j}$ the reaction associated with the i-nth degree of freedom of the element, by the PVD

$$
\delta x_{i} m_{i j} \ddot{x}_{j}=\int \delta x_{i} \phi_{i}(s) m(s) \phi_{j}(s) \mathrm{d} s \ddot{x}_{j}
$$

simplifying

$$
m_{i j}=\int m(s) \phi_{i}(s) \phi_{j}(s) \mathrm{d} s
$$

For $m(s)=\bar{m}=$ const.

$$
f_{\mathrm{i}}=\frac{\bar{m} L}{420}\left[\begin{array}{cccc}
156 & 54 & 22 L & -13 L \\
54 & 156 & 13 L & -22 L \\
22 L & 13 L & 4 L^{2} & -3 L^{2} \\
-13 L & -22 L & -3 L^{2} & 4 L^{2}
\end{array}\right] \ddot{\boldsymbol{x}}
$$

Introductory Remarks

Pro

some convergence theorem of FEM theory holds only if the mass matrix is consistent,

- slightly more accurate results,
- no need for static condensation.

Contra

- \boldsymbol{M} is no more diagonal, heavy computational aggravation,
- static condensation is computationally beneficial, inasmuch it

Structural Matrices

Damping Matrix

With our definition of \boldsymbol{C},

$$
\boldsymbol{C}=\sum_{b} \mathfrak{c}_{b} \boldsymbol{M}\left(\boldsymbol{M}^{-1} \boldsymbol{K}\right)^{b}
$$

assuming normalized eigenvectors, we can write the individual
component of $C^{\star}=\Psi^{\top} \boldsymbol{C} \boldsymbol{\Psi}$

$$
c_{i j}^{\star}=\boldsymbol{\psi}_{i}^{T} \boldsymbol{C} \psi_{j}=\delta_{i j} \sum_{b} \mathfrak{c}_{b} \omega_{j}^{2 b}
$$

due to the additional orthogonality relations, we recognize that now C^{\star} is a diagonal matrix.
Introducing the modal damping C_{j} we have

$$
C_{j}=\psi_{j}^{T} \boldsymbol{C} \psi_{j}=\sum_{b} \mathfrak{c}_{b} \omega_{j}^{2 b}=2 \zeta_{j} \omega_{j}
$$

and we can write a system of linear equations in the \mathfrak{c}_{b}.

Example

Structural Matrices

We want a fixed, 5\% damping ratio for the first three modes, taking note that the modal equation of motion is

$$
\ddot{q}_{i}+2 \zeta_{i} \omega_{i} \dot{q}_{i}+\omega_{i}^{2} q_{i}=p_{i}^{\star}
$$

Using

$$
\boldsymbol{C}=\mathfrak{c}_{0} \boldsymbol{M}+\mathfrak{c}_{1} \boldsymbol{K}+\mathfrak{c}_{2} \boldsymbol{K} \boldsymbol{M}^{-1} \boldsymbol{K}
$$

we have

$$
2 \times 0.05\left\{\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right\}=\left[\begin{array}{ccc}
1 & \omega_{1}^{2} & \omega_{1}^{4} \\
1 & \omega_{2}^{2} & \omega_{2}^{4} \\
1 & \omega_{3}^{2} & \omega_{3}^{4}
\end{array}\right]\left\{\begin{array}{l}
\mathfrak{c}_{0} \\
\mathfrak{c}_{1} \\
\mathfrak{c}_{2}
\end{array}\right\}
$$

Solving for the \mathfrak{c} 's and substituting above, the resulting damping matrix is orthogonal to every eigenvector of the system, for the first three modes, leads to a modal damping ratio that is equal to 5%.

Example

Structural Matrices

Computing the coefficients $\mathfrak{c}_{0}, \mathfrak{c}_{1}$ and \mathfrak{c}_{2} to have a 5% damping at frequencies $\omega_{1}=2, \omega_{2}=5$ and $\omega_{3}=8$ we have $\mathfrak{c}_{0}=1200 / 9100, \mathfrak{c}_{1}=159 / 9100$ and $\mathfrak{c}_{2}=-1 / 9100$.
Writing $\zeta(\omega)=\frac{1}{2}\left(\frac{\mathfrak{c}_{0}}{\omega}+\mathfrak{c}_{1} \omega+\mathfrak{c}_{2} \omega^{3}\right)$ we can plot the above function, along with its two term equivalent ($\mathfrak{c}_{0}=10 / 70, \mathfrak{c}_{1}=1 / 70$).

Negative damping? No, thank you: use only an even number of terms.

Geometric Stiffness

A common assumption is based on a linear approximation, for a beam element

$$
\boldsymbol{f}_{\mathrm{G}}=\frac{N}{L}\left[\begin{array}{cccc}
+1 & -1 & 0 & 0 \\
-1 & +1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] x
$$

It is possible to compute the geometrical stiffness matrix using FEM, shape functions and PVD,

$$
k_{G, i j}=\int N(s) \phi_{i}^{\prime}(s) \phi_{j}^{\prime}(s) \mathrm{d} s
$$

for constant N

$$
K_{\mathrm{G}}=\frac{N}{30 L}\left[\begin{array}{cccc}
36 & -36 & 3 L & 3 L \\
-36 & 36 & -3 L & -3 L \\
3 L & -3 L & 4 L^{2} & -L^{2} \\
3 L & -3 L & -L^{2} & 4 L^{2}
\end{array}\right]
$$

External Loadings

Following the same line of reasoning that we applied to find nodal inertial forces, by the PVD and the use of shape functions we have

$$
p_{i}(t)=\int p(s, t) \phi_{i}(s) \mathrm{d} s
$$

For a constant, uniform load $p(s, t)=\bar{p}=$ const, applied on a beam element,

$$
\boldsymbol{p}=\bar{p} L\left\{\begin{array}{llll}
\frac{1}{2} & \frac{1}{2} & \frac{L}{12} & -\frac{L}{12}
\end{array}\right\}^{T}
$$

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Choice of Property Formulation
Static Condensation
Example

Choice of Property Formulation

Simplified Approach

Some structural parameter is approximated, only translational DOF's are retained in dynamic analysis.

Consistent Approach

All structural parameters are computed according to the FEM, and all DOF's are retained in dynamic analysis.
If we choose a simplified approach, we must use a procedure to remove unneeded structural DOF's from the model that we use for the dynamic analysis.
Enter the Static Condensation Method.

We have, from a FEM analysis, a stiffnes matrix that uses all nodal DOF's, and from the lumped mass procedure a mass matrix were only translational (and maybe a few rotational) DOF's are blessed with a non zero diagonal term.

In this case, we can always rearrange and partition the displacement vector \boldsymbol{x} in two subvectors: a) \boldsymbol{x}_{A}, all the DOF's that are associated with inertial forces and b) x_{B}, all the remaining DOF's not associated with inertial forces.

$$
\boldsymbol{x}=\left\{\begin{array}{ll}
\boldsymbol{x}_{A} & \boldsymbol{x}_{B}
\end{array}\right\}^{T}
$$

Static Condensation, 2
 Structural Matrices

After rearranging the DOF's, we must rearrange also the rows (equations) and the columns (force contributions) in the structural matrices, and eventually partition the matrices so that

$$
\begin{aligned}
\left\{\begin{array}{c}
\boldsymbol{f}_{\boldsymbol{\prime}} \\
\mathbf{0}
\end{array}\right\} & =\left[\begin{array}{ll}
\boldsymbol{M}_{A A} & \boldsymbol{M}_{A B} \\
\boldsymbol{M}_{B A} & \boldsymbol{M}_{B B}
\end{array}\right]\left\{\begin{array}{l}
\ddot{\ddot{x}}_{A} \\
\ddot{\boldsymbol{x}}_{B}
\end{array}\right\} \\
\boldsymbol{f}_{S} & =\left[\begin{array}{ll}
\boldsymbol{K}_{A A} & \boldsymbol{K}_{A B} \\
\boldsymbol{K}_{B A} & \boldsymbol{K}_{B B}
\end{array}\right]\left\{\begin{array}{l}
\boldsymbol{x}_{A} \\
\boldsymbol{x}_{B}
\end{array}\right\}
\end{aligned}
$$

with

$$
\boldsymbol{M}_{B A}=\boldsymbol{M}_{A B}^{T}=\mathbf{0}, \quad \boldsymbol{M}_{B B}=\mathbf{0}, \quad \boldsymbol{K}_{B A}=\boldsymbol{K}_{A B}^{T}
$$

Finally we rearrange the loadings vector and write...

Static Condensation, 3

... the equation of dynamic equilibrium,

$$
\begin{aligned}
& \boldsymbol{p}_{A}=\boldsymbol{M}_{A A} \ddot{x}_{A}+M_{A B} \ddot{x}_{B}+\boldsymbol{K}_{A A} x_{A}+\boldsymbol{K}_{A B} \boldsymbol{x}_{B} \\
& \boldsymbol{p}_{B}=\boldsymbol{M}_{B A} \ddot{x}_{A}+M_{B B} \ddot{x}_{B}+\boldsymbol{K}_{B A} x_{A}+\boldsymbol{K}_{B B} x_{B}
\end{aligned}
$$

The terms in red are zero, so we can simplify

$$
\begin{aligned}
M_{A A} \ddot{x}_{A}+\boldsymbol{K}_{A A} x_{A}+\boldsymbol{K}_{A B} x_{B} & =\boldsymbol{p}_{A} \\
\boldsymbol{K}_{B A} x_{A}+\boldsymbol{K}_{B B} x_{B} & =\boldsymbol{p}_{B}
\end{aligned}
$$

solving for x_{B} in the 2 nd equation and substituting

$$
\begin{aligned}
\boldsymbol{x}_{B} & =\boldsymbol{K}_{B B}^{-1} \boldsymbol{p}_{B}-\boldsymbol{K}_{B B}^{-1} \boldsymbol{K}_{B A} \boldsymbol{x}_{A} \\
\boldsymbol{p}_{A}-\boldsymbol{K}_{A B} \boldsymbol{K}_{B B}^{-1} \boldsymbol{p}_{B} & =\boldsymbol{M}_{A A} \ddot{\boldsymbol{x}}_{A}+\left(\boldsymbol{K}_{A A}-\boldsymbol{K}_{A B} \boldsymbol{K}_{B B}^{-1} \boldsymbol{K}_{B A}\right) \boldsymbol{x}_{A}
\end{aligned}
$$

Going back to the homogeneous problem, with obvious positions we can write

$$
\left(\overline{\boldsymbol{K}}-\omega^{2} \overline{\boldsymbol{M}}\right) \psi_{A}=\mathbf{0}
$$

but the ψ_{A} are only part of the structural eigenvectors, because in essentially every application we must consider also the other DOFs, so we write

$$
\psi_{i}=\left\{\begin{array}{l}
\psi_{A, i} \\
\psi_{B, i}
\end{array}\right\}, \text { with } \psi_{B, i}=\boldsymbol{K}_{B B}^{-1} \boldsymbol{K}_{B A} \psi_{A, i}
$$

Example

Structural Matrices

Disregarding the factor $2 E J / L^{3}$,

$$
\boldsymbol{K}_{B B}=L^{2}\left[\begin{array}{ll}
6 & 2 \\
2 & 6
\end{array}\right], \boldsymbol{K}_{B B}^{-1}=\frac{1}{32 L^{2}}\left[\begin{array}{cc}
6 & -2 \\
-2 & 6
\end{array}\right], \boldsymbol{K}_{A B}=\left[\begin{array}{ll}
3 L & 3 L
\end{array}\right]
$$

The matrix \bar{K} is

$$
\overline{\boldsymbol{K}}=\frac{2 E J}{L^{3}}\left(12-\boldsymbol{K}_{A B} \boldsymbol{K}_{B B}^{-1} \boldsymbol{K}_{A B}^{T}\right)=\frac{39 E J}{2 L^{3}}
$$

