
Homework 1 SolutionsHomework 1 Solutions

Here we have the homework #1 solutions, preceeded by a few imports from the (almost)
standard library and the de�nition of an utility function.



In [1]: import numpy as np 
from numpy import cos, exp, pi, sin, sqrt 

def pd(s, v, u=None): 
   if u: 
       print('%30s: %g [%s]'%(s, v, u)) 
   else: 
       print('%30s: %g'%(s, v)) 



System Identi�cationSystem Identi�cation

The data, �rst as in text, next a bit of manipulation to have different values in different
arrays

In [2]: #       f    P      rho   theta 
raw = [[18., 3240.,  54.,  24.3], 
      [20., 4000., 118.,  55.1], 
      [22., 4840., 132., 123.9], 
      [24., 5760.,  80., 152.5]] 
f, p, r, t = map(np.array, zip(*raw)) 

omega = f*2*pi 
force = p 
rho   = r/1E6 
theta = t*pi/180.0 



A is the matrix of coef�cients and b the known term, k and m are computed using a least

squares solver

In [3]: A = np.vstack((np.ones(4), -omega**2)).T 
b = force*cos(theta)/rho 
k, m = np.linalg.lstsq(A, b, rcond=None)[0] 



In [4]: print('Matrix of coefficients,\n[ 1,  -omega^2_i ]') 

print('\n'.join('[ %d,  %.4g ]'%(row[0],row[1]) for row in A)) 
print('Known term,  p_i·cos theta_i/rho_i,') 
print('[', ', '.join('%.4g'%x for x in b), ']\n')       
print('Stiffness [MN/m]', k/1E6) 
print('      Mass [ton]', m/1000) 

Matrix of coefficients, 
[ 1,  -omega^2_i ] 
[ 1,  -1.279e+04 ] 
[ 1,  -1.579e+04 ] 
[ 1,  -1.911e+04 ] 
[ 1,  -2.274e+04 ] 
Known term,  p_i·cos theta_i/rho_i, 
[ 5.468e+07, 1.939e+07, -2.045e+07, -6.386e+07 ] 

Stiffness [MN/m] 207.45835123684353 
     Mass [ton] 11.927812957251826 



First we print the four estimates of  from the four imprecise measurements, next the
estimate obtained using the least squares solver.

In [5]:

Let's say that .

ζ

wn2 = k/m 
wn = sqrt(wn2) 
beta = omega/wn 
print('[', ', '.join('%.4g'%x for x in (force*sin(theta)/(2*rho*k*beta))), ']') 
print(np.linalg.lstsq(np.ones((4,1)), force*sin(theta)/(2*rho*k*beta), rcond=None)[0][0
]) 

ζ = 7%

[ 0.06939, 0.07032, 0.06998, 0.07008 ] 
0.06994247277376539 



Vibration IsolationVibration Isolation

The data, some easily derived quantity. beta2 is the squared frequency ratio of the

undamped, isolated system.

In [6]: mass = 17.13E3 
freq = 10.0 
omega = freq*2*pi 
TR = 1/3 
beta2 = 1+1/TR 



The frequency ratios ofthe damped systems are found using a library root solver,a bit of
cheating isn't it?

Next, the stiffnesses for different dampings are .

In [7]:

k = m = m /ω2
n ω2 β2

from scipy.optimize import newton 
def tr(b, z): return sqrt(1+4*b*b*z*z)/sqrt((1-b*b)**2+4*z*z*b*b) 

b_01 = newton(lambda b: tr(b, 0.01)-TR, sqrt(beta2)) 
b_10 = newton(lambda b: tr(b, 0.10)-TR, sqrt(beta2)) 
k_00 = mass*omega**2/beta2 
k_01 = mass*omega**2/b_01**2 
k_10 = mass*omega**2/b_10**2 



In [8]: print("Damping Ratio,   Damping Coeff. [kN·s/m],    Stiffness [MN/m]") 
print("           0%%, %25.3f, %19.3f"%(0.0, k_00/1E6)) 
print("           1%%, %25.3f, %19.3f"%( 
   0.02*sqrt(k_01*mass)/1000, k_01/1E6)) 
print("          10%%, %25.3f, %19.3f"%( 
   0.20*sqrt(k_10*mass)/1000, k_10/1E6)) 

Damping Ratio,   Damping Coeff. [kN·s/m],    Stiffness [MN/m] 
          0%,                     0.000,              16.907 
          1%,                    10.760,              16.898 
         10%,                   104.824,              16.036 



Impulsive Load + Num.IntegrationImpulsive Load + Num.Integration

The data of the problem and some easily derived parameters

In [9]: mass = 400 
wn = 2*pi*4 
z = 0.03 
p0 = 8200.0 
t0 = 0.040 

stif = mass*wn**2 
damp = 2*z*wn*mass 
Tn = 2*pi/wn 

beta = Tn/2/t0 
Dst = p0/stif 



We have a formula for the maximum of free response for a half sine excitation...

In [10]: Rmax = 2*beta*cos(pi/2/beta)/(beta**2-1) 

xmax_00_exact = Dst*Rmax 

print('Exact formula for undamped system') 
pd('Static displacement', Dst*1000, 'mm') 
pd('Max response coeff.', Rmax) 
pd('Max displacement', xmax_00_exact*1000, 'mm') 

Exact formula for undamped system 
          Static displacement: 32.4544 [mm] 
          Max response coeff.: 0.624818 
             Max displacement: 20.2781 [mm] 



Now the approximate formula, valid for every type of short impulse. The integral of the
half sine is

In [11]:

sin(πτ/ ) dτ = 2 /πp0 ∫ t0

0

t0 p0t0

print('Impulse-momentum approximate result') 
integral = p0*2*t0/pi 
xmax_00_approx = integral/mass/wn 

pd('Max displacement', xmax_00_approx*1000, 'mm') 

Impulse-momentum approximate result 
             Max displacement: 20.7708 [mm] 



And the numerical solution (now we take into account the damping).

We choose a total duration, a time step, we instantiate a time vector and de�ne the loading
and the load increments.

In [12]: t1 = 0.100 
N = 1000 
h = t1/N 
t = np.linspace(0, t1, N+1) 
p = p0*np.where(t<=t0, sin(pi*t/t0), 0.0) 
Dp = p[1:]-p[:-1] 



The constants for the Constant Acceleration Algorithm (they depend on )

In [13]:

so that in the next slide we can compute the solution (up to the point of a velocity reversal).

h

ks = stif + 2*damp/h + 4*mass/h/h 
cs = 2*damp + 4*mass/h 
ms = 2*mass 



In [14]: x0, v0 = 0, 0 
for tt, p0, dp in zip(t, p, Dp): 
   a0 = (p0-damp*v0-stif*x0)/mass 
   dps = dp+ms*a0+cs*v0 
   dx = dps/ks 
   dv = 2*(dx/h-v0) 
   x0, v0 = x0+dx, v0+dv 
   if v0<0: break 
    
pd('Max displacement', x0*1000, 'mm') 

             Max displacement: 19.3616 [mm] 



Rayleigh Quotient and Re�nementsRayleigh Quotient and Re�nements

The data of the problem, in order the assumed displacements, the �oor masses and the
storey stiffnesses. We de�ne also a �ctitious frequency and its square and eventually we
import the Fraction class from the standard library for a later use.

In [15]: x0, x1, x2, x3 = 0, 1, 2, 3 
m1, m2, m3 = 5, 5, 3 
k1, k2, k3 = 8, 5, 2 

w = 1 ; w2 = w*w 

from fractions import Fraction as f 



To compute the (double of the) strain energy we need the storey de�ections, d1 etc.

The RQ is simply the fraction (f, that is) with V2 in the numerator and T2 in the

denominator.

In [16]: d1, d2, d3 = x1-x0, x2-x1, x3-x2 
V2 = k1*d1**2 + k2*d2**2 + k3*d3**2 
T2 = w**2 * (m1*x1**2 + m2*x2**2 + m3*x3**2) 

R00 = f(V2,T2) 



To proceed with re�nements we need the inertial forces (f1, etc), the storey shears (v1,

etc, note that we have to sum the �oor forces from the top to the bottom), the storey
de�ections (d1, etc, computed as exact fractions using f) and eventually the �oor

displacements (x1, etc, this time we sum from the bottom to the top).



In [17]: f1, f2, f3 = w2*m1*x1, w2*m2*x2, w2*m3*x3 
print("Inertial forces, f_i/(m w**2)", f1, f2, f3) 

v3 = f3 ; v2 = v3+f2 ; v1 = v2+f1 
print("Storey shears, F_i/(m*w**2)  ", v1, v2, v3) 

d1, d2, d3 = f(v1, k1), f(v2, k2), f(v3, k3) 
print("Storey deflections, d_i*k/(m*w**2)", d1, d2, d3) 

x1 = x0+d1 ; x2 = x1+d2 ; x3 = x2+d3 
print("Storey displacements, x_i*k/(m*w**2)", x1, x2, x3) 

Inertial forces, f_i/(m w**2) 5 10 9 
Storey shears, F_i/(m*w**2)   24 19 9 
Storey deflections, d_i*k/(m*w**2) 3 19/5 9/2 
Storey displacements, x_i*k/(m*w**2) 3 34/5 113/10 



With the new displacements and the old forces, estimate a better V2 and next compute 

R01 and eventually a better kinetic energy T2 and R11.

In [18]: V2 = f1*x1 + f2*x2 + f3*x3 
R01 = f(T2, V2) 

T2 = w2*( m1*x1**2 + m2*x2**2 + m3*x3**2) 
R11 = f(V2, T2) 



It's time to display our results

In [19]: def p_Rxx(Rs, Rv):  
   print('%10s = %15s k/m = %g k/m.'%(Rs, str(Rv), 1.0*Rv)) 
    
p_Rxx('R00', R00) 
p_Rxx('R01', R01) 
p_Rxx('R11', R11) 

      R00 =           15/52 k/m = 0.288462 k/m. 
      R01 =        520/1847 k/m = 0.281538 k/m. 
      R11 =     18470/65927 k/m = 0.280158 k/m. 


