
Homework no.3
the solutions

Giacomo B. Boffi

Imposed Displacements

A

m

x1

x2

L

2L 2L

The dynamic system in figure is composed of two uniform beams of negligible mass, their
flexural stiffness being EJ=const, supporting a lumped mass of negligible rotatory inertia (the

flexibility matrix is F = L3

6EJ

[
3 2

2 96

]
).

The left support is subjected to an imposed horizontal displacement that varies between
0 and ∆

uA=∆

{
20τ3−15τ4+3τ5

16 for 0≤τ≤2,
1 for τ>2,

where τ=ω0t and ω20=
EJ
mL3

.
Plot the total vertical displacement of the mass in the time interval 0≤τ≤10.

Solution

We are going to

• determine the structural matrices for the 2 DoF dynamic system,
• compute its eigenvalues and its eigenvectors,
• determine the pseudo-static mass motion when the support is displaced
• write the EoM for the inertial forces due to the support motion,
• determine the particular integrals and the homogeneous solution first, and next the frre

vibrations,
• present our results.

Structural Matrices

Because the text of the problem gives us F , we can easily compute K by inversion of the
flexibility; the mass matrix is super easy... M=mI

1

F = array(((3., 2.), (2., 96.)))/6
K = array(((96., -2.), (-2., 3)))*6/(96*3-2*2)
M = array(((1., 0.), (0., 1.)))

Eigenvalues, eigenvectors, frequencies

Next we compute the eigenvalues and the eigenvectors

l2, Psi = eigh(K, M)
l1 = sqrt(l2)
L2 = diag(l2) ; L1 = sqrt(L2)

The structural matrices, the eigen* and the frequencies

M=m

[
+1 +0
+0 +1

]
,

F =
L3

6EJ

[
+3 +2
+2 +96

]
, K=

3EJ

142L3

[
+96 −2
−2 +3

]
,

Λ2=

[
+0.062472 +0

+0 +2.02908

]
, Λ=

[
+0.249944 +0

+0 +1.42446

]
,

Ψ=

[
+0.0214905 −0.999769
+0.999769 +0.0214905

]
.

Kinematics of the Problem

Starting from the imposed displacement of the left node we compute also its velocity and its accel-
eration, next we analyze the effects of a static displacement on the position of the supported mass.

The node displacement and its derivatives We use a polynomial class to represent the
displacement of A (the coefficients must be given in descending order). The class supports
evaluation and derivation (and other things that we are not going to use).

d = p(3, -15, 20, 0, 0, 0)/16
v = d.deriv()
a = v.deriv()

xA=0.1875τ
5−0.9375τ4+1.25τ3,

dxA
dτ

=x ′A=0.9375τ
4−3.75τ3+3.75τ2,

d2xA
dτ2

=x ′′A=3.75τ
3−11.25τ2+7.5τ=

15

4

(
τ3−3τ2+2τ

)
.

2

The influence matrix The displacement of the supported mass is analyzed degrading the A
hinge to a roller: the structure is hence a rigid system with 1 DoF and the CIR of the left-top
bar is on the vertical of the roller and on the line joining the two hinges.

1

1/2

1/2

2

For xA = 1 we have x1 = 1/2 and x2 = 2, hence E =
{
1/2 2

}T
. The modal load is

p?=−ΨTMEẍA=−mΨTEẍA=mΓẍA where Γ=−ΨTE.

E = array((0.5, 2.0))
G = -Psi.T@E

E=

{
+0.5
+2

}
, Γ=

{
−2.01028
+0.456904

}
.

Plots of displacement, velocity and acceleration of the node ... against a dimension-
less time that runs from 0 to 2 (note the normalization factors, especially the ones for
velocity and acceleration).

Dynamic Response

1. We write the EoM with reference to the dimensionless time τ=ω0t,
2. we find the particular integral that satisfies the EoM when the mass is subjected to the

static acceleration,
3. the forced modal responses are determined imposing the initial conditions for τ=0 and
4. eventually we determine the free response, this time imposing that the displacement and

the velocity of the forced and the free responses are equal for τ=2 .

3

The modal EoM with respect to dimensionless time The equation of motion is
Mẍ+Kx=−MEẍA.

If we denote with primes the derivative with respect to τ =ω0t, it is ḟ = ω0f ′ and the
equation of motion is

ω20Mx
′′+Kx=−ω20MEx ′′A.

Applying the modal transformation, with M?=M=mI (that implies that ME=mE)

mω20q
′′+mω20Λ

2q=−mω20ΨTEx ′′A

and, simplifying mω20 and developing the right member

q′′+Λ2q=−ΨTEx ′′A=
15

4
Γ(τ3−3τ2+2τ), where Γ=−ΨTE.

Particular Integral A particular integral (omitting the indices) is ξ(τ)=Pτ3+Qτ2+Rτ+S.
With the provision that we have to multiply our results by 15Γ/4 we can write

6Pτ+2Q+λ2
(
Pτ3+Qτ2+Rτ+S

)
=τ3−3τ2+2τ.

Equating for each power of τ the coefficients on both sides, we have

λ2P =1, λ2Q=−3, 6P+λ2R=2, 2Q+λ2S=0

a set of equations that can be readily translated to code (taking also into account the
multiplication by 15γi/4).

P = 1/l2 ; Q = -3/l2 ; R = (2-6*P)/l2 ; S = (0-2*Q)/l2
P, Q, R, S = map(lambda coeff: 3.75*coeff*G, (P, Q, R, S))
xi = [p(P[i], Q[i], R[i], S[i]) for i in (0, 1)]

ξ1=−120.671τ3+362.013τ2+11348.3τ−11589.6
ξ2=0.844418τ

3−2.53325τ2−0.808115τ+2.49695

Modal Responses, Forced Phase It is qi(τ)=Aicosλiτ+Bisinλiτ+ξi(0); the ξ have been
determined, we have to determine the constants of integration A and B imposing that q(0)=0
and q′(0)=0: it is Ai=−ξi(0) and λiBi=−ξ′i(0).
xi0 = array([Xi(0) for Xi in xi]) ; A = -xi0
dxi0 = array([Xi.deriv()(0) for Xi in xi]) ; B = -dxi0/l1

Plot of the forced modal responses We compute first the 2D array l1t1, that has
λiω0t in its two columns, next the modal response q02 because it’s the first phase of the
response for 0≤τ≤2...
l1t02 = outer(t02, l1)
q02 = A*cos(l1t02) + B*sin(l1t02) + array([Xi(t02) for Xi in xi]).T
dq02 = -A*l1*sin(l1t02) + B*l1*cos(l1t02) + array([Xi.deriv()(t02) for Xi in xi]).T

4

Modal Responses, free phase The free response starts at t22=2, we can impose that the
modal displacements and derivatives of the free response, computed at t22, are equal to the
modal displacements and derivatives for the forced phase. Indicating with a 1 the quantities
relative to the forced phase and with 2 the ones relative to free response,[

cosλiτ22 sinλiτ22
−sinλiτ22 cosλiτ22

]{
2Ai
2Bi

}
=

{1qi(τ22)
1q̇i(τ22)

λi

}
.

The coefficient matrix is an orthogonal matrix (i.e., A−1≡AT), so we can write our solution
as follows
t22 = 2
C22 = cos(l1*t22)
S22 = sin(l1*t22)
q22 = q1[-1]
dq22_over_l1 = dq1[-1]/l1
Afree = C22*q22-S22*dq22_over_l1
Bfree = S22*q22+C22*dq22_over_l1

It is now possible to compute the modal response in 2≤τ≤10, so that we can compute
the total displacements of the mass in said interval, as requested by the problem.
t210 = linspace(2.01, 10, 800)
l1t210 = outer(t210, l1)
q210 = Afree*cos(l1t210) + Bfree*sin(l1t210)
dq210 = -l1*Afree*sin(l1t210) + l1*Bfree*cos(l1t210)

Summing Up and Showing the Results

Finally we stick together the forced and the free responses, and compute the nodal deformations
by post-multiplying the modal responses by the transpose of Psi and the static displacement
by evaluating the polynomial d and taking the outer product with the influence matrix, finally
we compute the total displacement of the mass
t = hstack((t02, t210))
q = vstack((q02, q210))
dq = vstack((dq02, dq210))
x = q@Psi.T
xst = outer(where(t<t22,d(t), 1), E)
xtot = xst + x

5

The Plot of the Total Displacements ... normalized with respect to the final support of
the displacement.

The Total Displacements over a Longer Time Span The requirements of the problem are
satisfied, but I’m left with the curiosity of what happens to the vertical displacements in the
following... let’s plot the total displacements for 0≤τ≤30.
t230 = linspace(2.01, 30, 2800)
l1t230 = outer(t230, l1)
q230 = Afree*cos(l1t230) + Bfree*sin(l1t230)
dq230 = -l1*Afree*sin(l1t230) + l1*Bfree*cos(l1t230)

t = hstack((t02, t230))
q = vstack((q02, q230))
dq = vstack((dq02, dq230))
x = q@Psi.T
xst = outer(where(t<t22,d(t), 1), E)
xtot = xst + x

Quite a sling effect...

Post Scriptum

That’s all, except that here I show you the code that is executed at the beginning of the notebook.
There is the initialization of the plotting machinery and the imports, a further initialization

of the plotting style and eventually the definition of a number of utility functions.
If you were interested (who knows...) in the gory details of the production of the mathematical

displays and the plots, you can examine the notebook (code+text) that is the source of this paper.

6

http://nbviewer.jupyter.org/url/boffi.github.io/dati_2018/hw03/01-2DoF.ipynb

Initialization, Imports

%matplotlib inline

import numpy as np
from numpy import array, cos, diag, hstack, linspace
from numpy import outer, sin, sqrt, vstack, where
import matplotlib.pyplot as plt
from scipy.linalg import eigh

from jupyterthemes import jtplot
jtplot.style(context='paper', fscale=1.5, figsize=(15, 3))

Function Definitions

An helper funtion for the decoration of plots The Matplotlib API is a little verbose, this
is an attempt to squeeze the typical decoration that is applied to a plot in a single statement
def plt_labels(xl='', yl='', xt='', yt='', t='', l=1, c=1):

if xl: plt.xlabel(xl)
if yl: plt.ylabel(yl)
if xt: plt.xticks(xt)
if yt: plt.yticks(yt)
if t: plt.title(t)
if l: plt.legend(ncol=c)

Polynomials’ stuff A function to instantiate a library provided polynomial class and a
formatter function to prepare the mathematical display of a polynomial.
def p(*coefs):

from numpy import poly1d
return poly1d(coefs)

def ltx_p(p, leading_sign=False):
order = p.order
coeffs = p.coefficients
def _fmt(i, c):

coef = ('%+g' if (i or leading_sign) else '%g') % c
if c == 1 : coef = '+' if (i or leading_sign) else ''
if c == -1: coef = '-'
var = '{\\tau}' if i < order else ''
expn = '^{%d}'%(order-i) if i < order-1 else ''
return coef + ('\\,' if var else '') + var + expn

return ''.join(_fmt(i, c) for i, c in enumerate(coeffs) if c)

Other math stuff A formatter to prepare the math display of a matrix and the function that
is actually used to render the math displays.
def prmat(mat, fmt='%+.6g', type='b'):

return (r'\begin{%smatrix}' +
r'\\'.join('&'.join(fmt%num for num in row) for row in mat) +
r'\end{%smatrix}')%(type, type)

def dL(*pieces):
from IPython.display import Latex
display(Latex(' '.join(pieces)))

7

W

qualitative deformed shape

Free Vibrations of an Uniform Beam

A uniform beam, its length L, its stiffness EJ=const and its unit mass m̄=const is clamped
at x=0 and is simply supported at x=L.

The beam is in a condition of static equilibrium (see figure) under a couple W = w EJ
L

applied at x=L when, at time t=0, the external load is suddenly released.
Determine the modal responses for the first 3 modes and plot the bending moment Mb(0,t)

in the interval 0≤ω0t≤5, where ω20=
EJ
m̄L4

Solution

We are going to

• recall the general form of the eigenfunctions of an uniform beam, solutions of the
indefinite eq. of equilibrium,

• determine the eigenfunctions of the actual problem applying the boundary conditions,

– determine the wavenumbers,
– determine the frequencies of free vibration,

• determine the static equilibrium position of the beam (i.e., the initial conditions) using
the moment-curvature relationship and

– determine the coefficients of the eigenfunctions expansion of said initial condition,

• determine the modal responses (free vibrations following given initial conditions),
• write the bending moment as a sum of second derivatives of the modal responses,

– specialize for t=0 and discuss the problems arising from our particular boundary
conditions,

– specialize for x = 0 and plot for 0≤ ω0t ≤ 10 and discuss the role of the high
frequency components with respect to the effects of damping.

The eigenfunctions

The eigenfunctions of a uniform beam have the form

φn=Ansinβnx+Bncosβnx+Cnsinhβnx+Dncoshβnx,

where the wave number β is associated to the relevant frequency of vibration by the relationship

β4n=
m̄ω2n
EJ

or, multiplying by L4, (βnL)
4=ω2n

m̄L4

EJ
=
ω2n
ω20
.

8

The boundary conditions, determination of wavenumbers and frequencies The boundary
conditions for our problem are

φn(0)=0 φ′n(0)=0

φn(L)=0 −EJφ′′n(L)=0

From the first two equations we find that Bn+Dn=0 and An+Cn=0, solving for Cn and
Dn and substituting in the general integral we have

φn=An(sinβnx−sinhβnx)+Bn(cosβnx−coshβnx)
φ′′n=−Anλ2n(sinβnx+sinhβnx)−Bnλ2n(cosβnx+coshβnx)

The boundary conditions in L can be written, after some simplifications, in terms of a
homogeneous linear system[

sinβnL−sinhβnL cosβnL−coshβnL
sinβnL+sinhβnL cosβnL+coshβnL

]{
An
BN

}
=

{
0

0

}
Equating the determinant of the coefficent matrix to zero gives

2coshβnLsinβnL−2cosβnLsinhβnL=0 ↔ sinβnL=cosβnLtanhβnL.

Because for moderately large arguments it is tanhβL'1 we can write that the determinant
is (almost) equal to zero when sinβnL=cosβnL, i.e., when βL=π/4+nπ.

It is useful to plot sinβnL−cosβnLtanhβnL and sinβnLcosβnL against βL/π,
BetaL = linspace(0,5,501)
det_exact = sin(pi*BetaL)-cos(pi*BetaL)*tanh(pi*BetaL)
det_approx = sin(pi*BetaL)-cos(pi*BetaL)

Not interested in the trivial solution βnL = 0, it’s apparent that the roots are
βnL'(n+1/4)π but we can compute numerically more precise approximations to the roots
of the determinant and eventually the frequencies of vibration, ω2n=(βnL)4ω20.
N = 3
roots = array([newton(lambda x: sin(x)-cos(x)*tanh(x), (r+1.25)*pi)

for r in range(N)])
BetaL = roots
w1 = BetaL**2
w2 = w1**2

9

wEJ/L

z EJ/L

The adimensional wavenumbers

β1L=3.9266, β2L=7.06858, β3L=10.2102.

The adimensional frequencies

ω1
ω0

=15.4182,
ω2
ω0

=49.9649,
ω3
ω0

=104.248.

The adimensional squared frequencies

ω21
ω20

=237.721,
ω22
ω20

=2496.49,
ω23
ω20

=10867.6.

The eigenfunctions It is φn=(sinβnx−sinhβnx)An+(cosβnx−coshβnx)Bn, with (from the
displacement boundary condition in L)

(sinβnL−sinhβnL)An+(cosβnL−coshβnL)Bn=CAnAn+CBnBn=0

CA, CB = sin(roots)-sinh(roots), cos(roots)-cosh(roots)
A = 1.0 ; B = -CA*A/CB

xi = linspace(0, 1, 1001)
b_xi = outer(xi, roots)
phi = A*(sin(b_xi)-sinh(b_xi)) + B*(cos(b_xi)-cosh(b_xi))

Static equilibrium position

We put in evidence an hyperstatic reaction Z = z EJ/L, the bending moment is
M=(x−L)Z/L+xW/L ; the curvature is y ′′=−EJM=−(x−L)z/L2−xw/L2 ; integrating
y ′=−(x−L)2/2z/L2−x2/2w/L2+A and y=−(x−L)3/6z/L2−x3/6w/L2+Ax+B.

Imposing the boundary conditions y(0)=zL/6+B=0 and y ′(0)=−z/2+A=0 we have
A=z/2 and B=−zL/6

10

Substituting in y it is y=−(x−L)3/6z/L2−x3/6w/L2+x/2z−L/6z. evaluating in x=
L and imposing a zero displacement we have y(L)=0=(1/2−1/6)zL−1/6wL→z=w/2.

Substituting again in y and simplifying we have

y(x)=
wL

4

x2L−x3

L3
=L

ξ2−ξ3

4
w .

Modal expansion of static displacement We can represent the (known) static displacements
in terms of a weighted sum of eigenfunctions

y(x)=
∞

∑
1

ηnφn(x),

whose coefficients can be easily determined by exploiting the orthogonality relation of the
eigenfunctions: ∫ L

0
m̄(x)φmydx=δm,nmnηn→ηn=

∫ L
0 m̄(x)φnydx∫ L
0 m̄(x)φ

2
ndx
.

modal_mass = array([trapz(phi_i**2, dx=0.001) for phi_i in phi.T])
modmass_eta = array([trapz(phi_i*y, dx=0.001) for phi_i in phi.T])
eta = modmass_eta/modal_mass

η1=+0.0240387, η2=−0.00399941, η3=+0.00132873.

Plotting the approximation to the static displacements obtained using a few eigenfunctions
is not really useful, but it’s so easy... We plot the approximant and the difference between
the static displacements and the approximant.

11

The Modal Responses

We know that the initial velocity is zero, the modal displacements are equal to ηi and so the
modal responses are simply

qn(t)

wL
=ηncosωnt=ηncos(β

2
nL
2ω0t)

q1
wL

=+0.0240387cos(15.4182ω0t),
q2
wL

=−0.00399941cos(49.9649ω0t),

q3
wL

=+0.00132873cos(104.248ω0t).

The Bending Moment M(0,t)

It is M=−EJy ′′, or

M=−EJwL∑ηn
1

L2
d2φn(βnLξ)

dξ2
cosωit=−

(
∑ηn

d2φn(βnLξ)

dξ2
cosωit

)
W .

Because

−
d2φn(βnLξ)

dξ2

∣∣∣∣
ξ=0

= β2nL
2
(
(sinβnξ+sinhβnξ)An+(cosβnξ+coshβnξ)Bn

)∣∣
ξ=0

=2
ωn
ω0
Bn

we can finally write M(0,t)=2W∑ωn
ω0
ηnBncos(

ωn
ω0
ω0t)

M(0)

W
=−0.740691cos(15.42ω0t)+0.399659cos(49.96ω0t)−0.277035cos(104.25ω0t)+...

12

Static bending moment Before proceding with M(0,t) it is interesting to compute the
approximation to M(x,0), that is how well we are approximating the bending moment at the
beginning of our analysis.

M(x,0)=−EJwL∑ηn
d2φn
dx2
cos(ωn0)=

=W∑
ωn
ω0
ηn
(
(sinβnξ+sinhβnξ)An+(cosβnξ+coshβnξ)Bn

)
d2y is the NEGATIVE of the second spatial derivative of \phi
d2y = A*(sin(b_xi)+sinh(b_xi)) + B*(cos(b_xi)+cosh(b_xi))
M_stat = d2y@(eta*BetaL**2)

-0.6180668193431146

As you can see, we are in trouble inasmuch the bending moment in x = L can not be
approximated correctly, as we are summing contributions of the type φ′′(L)≡ 0. Ask your
favourite search engine about "Gibbs phenomenon".

The response in terms of bending at the fixed support We need an 1D array with the
instants of (dimensionless) time, a 2D array with the arguments of the cosines (i.e., time
multiplied by the frequencies), a 2D array with the cosines of said arguments and finally we
multiply the cosines by the coefficients

13

t = linspace(0, 5, 5001)
wt = outer(t, BetaL**2)
cwt = cos(wt)
M = cwt@(2*B*eta*BetaL**2)

Let’s see what happens if we take into account a very small value of viscous damping.
Similar to what we have done for MDoF systems, we assume that the modal shapes are

not affected by the presence of damping and that the modal response is

qi(t)=exp(−ζωit)(AisinωD,it+BicosωD,it).

In our case, qi(0)=qo,i and q̇i(0)=0, it is Bi =qo,i and Ai =ζBi/
√
1−ζ2; for small ζ, we

can approximately write ωD,i'ωi and Ai'ζBi .
Let’s say ζ=0.5% and compute and plot the (approximated) response

zeta = 0.005
swt = sin(wt)
Md = (exp(-zeta*wt)*(zeta*swt+cwt))@(2*B*eta*BetaL**2)

if 1:
plt.plot(t, Md)
plt.title('Bending moment @ x=0, with $\\zeta=0.5\\%$')
plt.xlabel(r'$\tau=\omega_0t$')
plt.ylabel(r'$M(0)/W$')
plt.ylim((-1.5, 1.5))
plt.yticks((-1, -0.5, 0, 1))
rev_y()

14

As you can see, the effects of viscous damping are really important for the high frequency
modal components, that is because the decrement

exp(−ζωnt)=exp(−ζ
2π

Tn
t)=e−2πζe

t
Tn =e−2πζencycles.

is proportional to the exponential of the number of cycles involved...
Here we stop with this printed solution, but if you like you can download the notebook

that is the source of this paper and as an added bonus you’ll receive an interactive plotting
widget that lets you investigate the variation of the response with respect to the value of the
damping ratio. A further bonus (well, possibly so...) is the code that produced the plots and
the mathematical displays, code that’s been hidden in this paper to streamline the narrative
but could be interesting from a different point of view.

def p(z=0.5):
zeta = z/100.0
M = (exp(-zeta*wt)*(zeta*swt+cwt))@(2*B*eta*BetaL**2)
plt.plot(t, M)
plt.title('Bending moment @ x=0, with $\\zeta=%.1f\\%%$'%z)
plt.xlabel(r'$\tau=\omega_0t$')
plt.ylabel(r'$M(0)/W$')
plt.ylim((-1.5, 1.5))
plt.yticks((-1, -0.5, 0, 1))
rev_y()

interact(p, z=(0, 2.0)) ;

interactive(children=(FloatSlider(value=0.5, description='z', max=2.0), Output()), _dom_classes=('widget-
inter...

The Initialization Cells

I have placed the inizialization cells here, rather than at the beginning of the notebook, to not
disturb the flow of the narrative. We have all the necessary imports, plus the definition of some
helper functions, mostly connected to the formatting of the results...

The import statements

%matplotlib inline
import numpy as np
from numpy import array, cos, cosh, exp, linspace, outer
from numpy import pi, sin, sinh, sqrt, tanh, trapz
import matplotlib.pyplot as plt
from scipy.optimize import newton
from jupyterthemes import jtplot
from itertools import count, zip_longest
from ipywidgets import interact

Configuration statements and function definitions

15

http://nbviewer.jupyter.org/url/boffi.github.io/dati_2018/hw03/02-BeamFreeVibrations.ipynb

jtplot.style(context='paper', fscale=1.5, figsize=(15, 3))
def rev_y(): plt.ylim(plt.ylim()[::-1])

def dL(*l):
from IPython.display import Latex
display(Latex(' '.join(l)))

def grouper(iterable, N):
return zip_longest(*([iter(iterable)]*N))

def groupalign(seq, N, variable='x_{%d}', fmt='%g', closing='.'):
beg = r'\begin{align*}'
end = closing + r'\end{align*}'
xfmt = variable + '&=' + fmt
g = grouper(seq, N)
body = r',\\'.join(

',&'.join(
xfmt%(1+i+N*j, x) for i, x in enumerate(items) if x != None)

for j, items in enumerate(g))
return ''.join((beg, body, end))

16

	Imposed Displacements
	Solution
	Structural Matrices
	Eigenvalues, eigenvectors, frequencies
	Kinematics of the Problem
	Dynamic Response
	Summing Up and Showing the Results

	Post Scriptum
	Initialization, Imports
	Function Definitions

	Free Vibrations of an Uniform Beam
	Solution
	The eigenfunctions
	Static equilibrium position
	The Modal Responses
	The Bending Moment M(0, t)

	The Initialization Cells
	The import statements
	Configuration statements and function definitions

