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1 2 DoF system — Support Motion

Eigenvalues The equation of free vibration is(
EJ

L3

[
3 −3
−3 6

]
−mω2

[
2 0
0 5

])
ψ sinωt = 0,

that admits non trivial solutions when

det

(
EJ

L3

[
3 −3
−3 6

]
−mω2

[
2 0
0 5

])
= 0.

With ω2 = Λω2
0 we can write equivalently

(3− 2Λ)(6− 5Λ) = 9⇔ 9− 27Λ + 10Λ2 = 0⇔ Λ2 − 2× 1.35Λ + 0.9 = 0

that offers the solutions

Λ1 = 1.35−
√

1.352 − 0.9 = 0.390, Λ2 = 1.35 +
√

1.352 − 0.9 = 2.310.

Eigenvectors The first equation of the e.o.f.v. gives

λ2i =
3− 2Λi

3
λ1i

and we may conveniently use (because we are going to compute x1) ψ11 =
ψ12 = 1 that, substituted in the previous equation, give

Ψ =

[
1 1

+0.740 −0.540

]
.

It’s easy to see that

Ψ−1 =
1

1.280

[
0.540 +1
0.740 −1

]
.

Sketches of uE, u̇E, üE I will omit the trivial sketches of uE and its time
derivatives, I’d just like to mention that u̇E = const. = ω0∆.
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Modal equations of motion Because the acceleration of the support is al-
ways equal to zero (except for two infinite impulses of infinitesimal dura-
tion, that provide a discrete change of the velocity) there are NO apparent
forces and our modal equation of motion are simply

q̈1 + 0.390ω2
0q1 = 0,

q̈2 + 2.310ω2
0q2 = 0.

While we are at it, we remark that the response is simply the homogeneous
integral, with λi =

√
Λi

qi(t) = Ei sinλiω0t+Bi cosλiω0t.

The response, clearly, depends on the initial conditions...

Initial conditions We write, again

xtot = xstat + x,

ẋtot = ẋstat + ẋ.

Because xstat = E uE we can write

x0 = xtot,0 −EuE,0 = xtot,0, (because uE,0 = 0)

ẋ0 = ẋtot,0 −Eu̇E,0 = ẋtot,0 −E ω0∆.

In terms of total displacements, both the initial total displacements and
the initial total velocities are equal to zero, so that finally we have

x0 = 0,

ẋ0 = −E ω0∆.

Having said that E =
[
1 1/2

]T
we can now write the initial conditions

in terms of modal coordinates:

q0 = 0,

q̇0 = −Ψ−1E ω0∆,

= − 1

1.280

[
0.540 +1
0.740 −1

] [
1

1/2

]
ω0∆,

= − 1

16

[
13
3

]
ω0∆.

and

q1 = − 13

16λ1
sin(λ1ω0t)∆,

q2 = − 3

16λ2
sin(λ2ω0t)∆.

Mass displacement at t1 Because ω0t1 = 1 and ψ11 = ψ12 = 1,

x1(t1) = − (13/λ1 sinλ1 + 3/λ2 sinλ2)
∆

16
.

What happens for t > t1? At t = t1 the system will experience the opposite
of what happened at t = 0, with a negative infinite acceleration impulse
that takes back the support velocity to 0.

Mathematically, qi = Ai
(

sin(λiω0t)− sin(λiω0(t− t1))
)
.
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2 Free Vibrations

• The first two boundaries conditions are

φ(0) = 0, M(0) = −EJφ′′(0) = 0

and the coefficients of the cosine and of the hyperbolic cosine are hence
zero and the general integral can be simplified:

φ(x) = A sinβx+B sinhβx.

By M(L) = −EJφ′′(L) = 0 we have

(sinβL)A+ (− sinhβL)B = 0.

The vertical equilibrium condition at x = L, when V = −EJφ′′′ is a
clock-wise shear, is V +kφ(L) = 0 or, rearranging, φ(L)k/EJ = φ(L)6/L3 =
φ′′′(L). Expanding,

(6 sinβL)A+ (6 sinhβL)B = (−β3L3 cosβL)A+ (β3L3 coshβL)B.

Representing our conditions as a linear system,[
+ sinβL − sinhβL

+6 sinβL+ β3L3 cosβL +6 sinhβL− β3L3 coshβL

] {
A
B

}
=

{
0
0

}
we recognize the possibility of a non trivial solution when

+ sinβL(+6 sinhβL− β3L3 coshβ) = − sinhβL(+6 sinβL+ β3L3 cosβL)

Numerically, β1L ' 2.0015 and ω2
1 = (β1L)4 ω2

0 ' 16.05ω2
0

• For a 1 DoF, we compute the flexibility using the PVD

1 · δ =

∫ 2L
3

0

x2

9EJ
dx+

∫ L
3

0

4x2

9EJ
dx+

2

3
·

2/3

k
=

22

243

L3

EJ
.

The stiffness is k∗ = 243
22

EJ
L3 , the mass is m∗ = 2

3m̄L and the first frequency
is ω2 = 729

44 ω
2
0 ' 16.57ω2

0 .

• For the 2 DoF system, the mass matrix is

M = m̄L

[
1/2 0
0 1/4

]
,

the stiffness matrix, that can be found computing the flexibilities with the
PVD and inverting the flexibility matrix is

K =
EJ

L3

[
+48 −24
−24 +18

]
and solving the eigenvalue problem gives ω2 = 15.065ω2

0 .

It is worth noting that this estimate is smaller than the “true” value of
the first frequency: a model that uses lumped masses gives no guarantee
with respect to convergence from above.
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The Rayleigh quotient uses v(x, t) = Z0ψ(x) sinωt and v̇(x, t) = ωZ0ψ(x) cosωt,
and for our problem

Vmax =
1

2
Z2

0

∫ L

0

EJψ′′2 dx+
1

2
Z2

0ψ(L)2k, Tmax =
1

2
ω2

0Z
2
0

∫ L

0

m̄ψ2 dx

and

ω2 =
EJ

∫ L
0
ψ′′2 dx+ kψ(L)2∫ L
0
m̄ψ2 dx

• With ψa = sin πx/L it is

ω2 =
π4

L4EJ
∫ L

0
sin2 πx/L dx+ k · 02

m̄
∫ L

0
sin2 πx/L dx

=
π4

2
EJ
L3

m̄L/2
= π4ω2

0 .

• With ψb = x/L it is

ω2 =
EJ

∫ L
0

02 dx+ k · 12

m̄
∫ L

0
x2/L2 dx

=
6EJ
L3

m̄L/3
= 18ω2

0 .

• With ψ = aψa + bψb

ω2 =
a2 π4

2
EJ
L3 + b2 6EJ

L3

(1/2 a2 + 2/π ab+ 1/3 b2)m̄L
=

a2 π4

2 + 6b2

(1/2 a2 + 2/π ab+ 1/3 b2)
ω2

0 .

Someone will recognize the ratio of two quadratic forms and understand
that the minimum ω2 can be found by solving the eigenvalue problem
formulated in Ritz coordinates:([

π4

2 0
0 6

]
− ω2

[
1
2

1
π

1
π

1
3

])
z = 0.

Eventually one can find that ω2 = 16.070ω2
0 . The corresponding shape

function is depicted below.
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Rayleigh-Ritz solution, = 0.126 a + 1.000 b
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