Written Test

Dynamics of Structures

July 20, 2018

12 DoF system - Support Motion

Eigenvalues The equation of free vibration is

$$
\left(\frac{E J}{L^{3}}\left[\begin{array}{cc}
3 & -3 \\
-3 & 6
\end{array}\right]-m \omega^{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right]\right) \boldsymbol{\psi} \sin \omega t=\mathbf{0}
$$

that admits non trivial solutions when

$$
\operatorname{det}\left(\frac{E J}{L^{3}}\left[\begin{array}{cc}
3 & -3 \\
-3 & 6
\end{array}\right]-m \omega^{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right]\right)=0
$$

With $\omega^{2}=\Lambda \omega_{0}^{2}$ we can write equivalently

$$
(3-2 \Lambda)(6-5 \Lambda)=9 \Leftrightarrow 9-27 \Lambda+10 \Lambda^{2}=0 \Leftrightarrow \Lambda^{2}-2 \times 1.35 \Lambda+0.9=0
$$

that offers the solutions

$$
\Lambda_{1}=1.35-\sqrt{1.35^{2}-0.9}=0.390, \quad \Lambda_{2}=1.35+\sqrt{1.35^{2}-0.9}=2.310
$$

Eigenvectors The first equation of the e.o.f.v. gives

$$
\lambda_{2 i}=\frac{3-2 \Lambda_{i}}{3} \lambda_{1 i}
$$

and we may conveniently use (because we are going to compute x_{1}) $\psi_{11}=$ $\psi_{12}=1$ that, substituted in the previous equation, give

$$
\boldsymbol{\Psi}=\left[\begin{array}{cc}
1 & 1 \\
+0.740 & -0.540
\end{array}\right] .
$$

It's easy to see that

$$
\boldsymbol{\Psi}^{-1}=\frac{1}{1.280}\left[\begin{array}{ll}
0.540 & +1 \\
0.740 & -1
\end{array}\right] .
$$

Sketches of $\boldsymbol{u}_{\boldsymbol{E}}, \dot{\boldsymbol{u}}_{\boldsymbol{E}}, \ddot{\boldsymbol{u}}_{\boldsymbol{E}}$ I will omit the trivial sketches of u_{E} and its time derivatives, I'd just like to mention that $\dot{u}_{E}=$ const. $=\omega_{0} \Delta$.

Modal equations of motion Because the acceleration of the support is always equal to zero (except for two infinite impulses of infinitesimal duration, that provide a discrete change of the velocity) there are NO apparent forces and our modal equation of motion are simply

$$
\begin{aligned}
& \ddot{q}_{1}+0.390 \omega_{0}^{2} q_{1}=0 \\
& \ddot{q}_{2}+2.310 \omega_{0}^{2} q_{2}=0 .
\end{aligned}
$$

While we are at it, we remark that the response is simply the homogeneous integral, with $\lambda_{i}=\sqrt{\Lambda_{i}}$

$$
q_{i}(t)=E_{i} \sin \lambda_{i} \omega_{0} t+B_{i} \cos \lambda_{i} \omega_{0} t
$$

The response, clearly, depends on the initial conditions...
Initial conditions We write, again

$$
\begin{aligned}
& \boldsymbol{x}_{\mathrm{tot}}=\boldsymbol{x}_{\mathrm{stat}}+\boldsymbol{x} \\
& \dot{\boldsymbol{x}}_{\mathrm{tot}}=\dot{\boldsymbol{x}}_{\mathrm{stat}}+\dot{\boldsymbol{x}}
\end{aligned}
$$

Because $\boldsymbol{x}_{\text {stat }}=\boldsymbol{E} u_{E}$ we can write

$$
\begin{aligned}
& \boldsymbol{x}_{0}=\boldsymbol{x}_{\mathrm{tot}, 0}-\boldsymbol{E} u_{E, 0}=\boldsymbol{x}_{\mathrm{tot}, 0}, \quad \text { (because } u_{E, 0}=0 \text {) } \\
& \dot{\boldsymbol{x}}_{0}=\dot{\boldsymbol{x}}_{\mathrm{tot}, 0}-\boldsymbol{E} \dot{u}_{E, 0}=\dot{\boldsymbol{x}}_{\mathrm{tot}, 0}-\boldsymbol{E} \omega_{0} \Delta .
\end{aligned}
$$

In terms of total displacements, both the initial total displacements and the initial total velocities are equal to zero, so that finally we have

$$
\begin{aligned}
\boldsymbol{x}_{0} & =\mathbf{0}, \\
\dot{\boldsymbol{x}}_{0} & =-\boldsymbol{E} \omega_{0} \Delta .
\end{aligned}
$$

Having said that $\boldsymbol{E}=\left[\begin{array}{cc}1 & 1 / 2\end{array}\right]^{T}$ we can now write the initial conditions in terms of modal coordinates:

$$
\begin{aligned}
\boldsymbol{q}_{0} & =\mathbf{0} \\
\dot{\boldsymbol{q}}_{0} & =-\Psi^{-1} \boldsymbol{E} \omega_{0} \Delta \\
& =-\frac{1}{1.280}\left[\begin{array}{ll}
0.540 & +1 \\
0.740 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
1 / 2
\end{array}\right] \omega_{0} \Delta \\
& =-\frac{1}{16}\left[\begin{array}{c}
13 \\
3
\end{array}\right] \omega_{0} \Delta
\end{aligned}
$$

and

$$
\begin{aligned}
& q_{1}=-\frac{13}{16 \lambda_{1}} \sin \left(\lambda_{1} \omega_{0} t\right) \Delta \\
& q_{2}=-\frac{3}{16 \lambda_{2}} \sin \left(\lambda_{2} \omega_{0} t\right) \Delta
\end{aligned}
$$

Mass displacement at $\boldsymbol{t}_{\mathbf{1}}$ Because $\omega_{0} t_{1}=1$ and $\psi_{11}=\psi_{12}=1$,

$$
x_{1}\left(t_{1}\right)=-\left(13 / \lambda_{1} \sin \lambda_{1}+3 / \lambda_{2} \sin \lambda_{2}\right) \frac{\Delta}{16}
$$

What happens for $\boldsymbol{t}>\boldsymbol{t}_{\mathbf{1}}$? At $t=t_{1}$ the system will experience the opposite of what happened at $t=0$, with a negative infinite acceleration impulse that takes back the support velocity to 0 .
Mathematically, $q_{i}=A_{i}\left(\sin \left(\lambda_{i} \omega_{0} t\right)-\sin \left(\lambda_{i} \omega_{0}\left(t-t_{1}\right)\right)\right)$.

2 Free Vibrations

- The first two boundaries conditions are

$$
\phi(0)=0, \quad M(0)=-E J \phi^{\prime \prime}(0)=0
$$

and the coefficients of the cosine and of the hyperbolic cosine are hence zero and the general integral can be simplified:

$$
\phi(x)=A \sin \beta x+B \sinh \beta x .
$$

By $M(L)=-E J \phi^{\prime \prime}(L)=0$ we have

$$
(\sin \beta L) A+(-\sinh \beta L) B=0
$$

The vertical equilibrium condition at $x=L$, when $V=-E J \phi^{\prime \prime \prime}$ is a clock-wise shear, is $V+k \phi(L)=0$ or, rearranging, $\phi(L)^{k} / E J=\phi(L)^{6} / L^{3}=$ $\phi^{\prime \prime \prime}(L)$. Expanding,

$$
(6 \sin \beta L) A+(6 \sinh \beta L) B=\left(-\beta^{3} L^{3} \cos \beta L\right) A+\left(\beta^{3} L^{3} \cosh \beta L\right) B
$$

Representing our conditions as a linear system,

$$
\left[\begin{array}{cc}
+\sin \beta L & -\sinh \beta L \\
+6 \sin \beta L+\beta^{3} L^{3} \cos \beta L & +6 \sinh \beta L-\beta^{3} L^{3} \cosh \beta L
\end{array}\right]\left\{\begin{array}{l}
A \\
B
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

we recognize the possibility of a non trivial solution when
$+\sin \beta L\left(+6 \sinh \beta L-\beta^{3} L^{3} \cosh \beta\right)=-\sinh \beta L\left(+6 \sin \beta L+\beta^{3} L^{3} \cos \beta L\right)$
Numerically, $\beta_{1} L \simeq 2.0015$ and $\omega_{1}^{2}=\left(\beta_{1} L\right)^{4} \omega_{0}^{2} \simeq 16.05 \omega_{0}^{2}$

- For a 1 DoF, we compute the flexibility using the PVD

$$
1 \cdot \delta=\int_{0}^{\frac{2 L}{3}} \frac{x^{2}}{9 E J} d x+\int_{0}^{\frac{L}{3}} \frac{4 x^{2}}{9 E J} d x+\frac{2}{3} \cdot \frac{2 / 3}{k}=\frac{22}{243} \frac{L^{3}}{E J}
$$

The stiffness is $k^{*}=\frac{243}{22} \frac{E J}{L^{3}}$, the mass is $m^{*}=\frac{2}{3} \bar{m} L$ and the first frequency is $\omega^{2}=\frac{729}{44} \omega_{0}^{2} \simeq 16.57 \omega_{0}^{2}$.

- For the 2 DoF system, the mass matrix is

$$
\boldsymbol{M}=\bar{m} L\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 4
\end{array}\right]
$$

the stiffness matrix, that can be found computing the flexibilities with the PVD and inverting the flexibility matrix is

$$
\boldsymbol{K}=\frac{E J}{L^{3}}\left[\begin{array}{ll}
+48 & -24 \\
-24 & +18
\end{array}\right]
$$

and solving the eigenvalue problem gives $\omega^{2}=15.065 \omega_{0}^{2}$.
It is worth noting that this estimate is smaller than the "true" value of the first frequency: a model that uses lumped masses gives no guarantee with respect to convergence from above.

The Rayleigh quotient uses $v(x, t)=Z_{0} \psi(x) \sin \omega t$ and $\dot{v}(x, t)=\omega Z_{0} \psi(x) \cos \omega t$, and for our problem

$$
V_{\max }=\frac{1}{2} Z_{0}^{2} \int_{0}^{L} E J \psi^{\prime \prime 2} d x+\frac{1}{2} Z_{0}^{2} \psi(L)^{2} k, \quad T_{\max }=\frac{1}{2} \omega_{0}^{2} Z_{0}^{2} \int_{0}^{L} \bar{m} \psi^{2} d x
$$

and

$$
\omega^{2}=\frac{E J \int_{0}^{L} \psi^{\prime \prime 2} d x+k \psi(L)^{2}}{\int_{0}^{L} \bar{m} \psi^{2} d x}
$$

- With $\psi_{a}=\sin \pi x / L$ it is

$$
\omega^{2}=\frac{\frac{\pi^{4}}{L^{4}} E J \int_{0}^{L} \sin ^{2} \pi x / L d x+k \cdot 0^{2}}{\bar{m} \int_{0}^{L} \sin ^{2} \pi x / L d x}=\frac{\frac{\pi^{4}}{2} \frac{E J}{L^{3}}}{\bar{m} L / 2}=\pi^{4} \omega_{0}^{2} .
$$

- With $\psi_{b}=x / L$ it is

$$
\omega^{2}=\frac{E J \int_{0}^{L} 0^{2} d x+k \cdot 1^{2}}{\bar{m} \int_{0}^{L} x^{2} / L^{2} d x}=\frac{\frac{6 E J}{L^{3}}}{\bar{m} L / 3}=18 \omega_{0}^{2}
$$

- With $\psi=a \psi_{a}+b \psi_{b}$

$$
\omega^{2}=\frac{a^{2} \frac{\pi^{4}}{2} \frac{E J}{L^{3}}+b^{2} \frac{6 E J}{L^{3}}}{\left(1 / 2 a^{2}+2 / \pi a b+1 / 3 b^{2}\right) \bar{m} L}=\frac{a^{2} \frac{\pi^{4}}{2}+6 b^{2}}{\left(1 / 2 a^{2}+2 / \pi a b+1 / 3 b^{2}\right)} \omega_{0}^{2} .
$$

Someone will recognize the ratio of two quadratic forms and understand that the minimum ω^{2} can be found by solving the eigenvalue problem formulated in Ritz coordinates:

$$
\left(\left[\begin{array}{cc}
\frac{\pi^{4}}{2} & 0 \\
0 & 6
\end{array}\right]-\omega^{2}\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{\pi} \\
\frac{1}{\pi} & \frac{1}{3}
\end{array}\right]\right) \boldsymbol{z}=\mathbf{0} .
$$

Eventually one can find that $\omega^{2}=16.070 \omega_{0}^{2}$. The corresponding shape function is depicted below.

