
Con�nuous System
Imports, stuff

from sympy import *
init_printing(use_latex=True)
from IPython.display import Latex
%matplotlib inline

Symbols
x, w2 = symbols('x omega^2')
L, m, EJ = symbols('L m EJ', positive = True)
A, B, C, D, ld, LD = symbols('A B C D lambda Lambda')
f, φ = symbols('f phi')

Supported mass and s�ffness of support
mass_coeff = 8
stiff_coeff = 24
k = stiff_coeff*EJ/L**3
M = mass_coeff*m*L

General solu�on and its deriva�ves
f0 = A*cos(ld*x) + B*sin(ld*x) + C*cosh(ld*x) + D*sinh(ld*x)
f1 = f0.diff(x)
f2 = f1.diff(x)
f3 = f2.diff(x)
display(Eq(φ,f0))

Le� boundary condi�ons
The eigenfunc�on and its second deriva�ve must be zero when 0 is subs�tuted for x, we solve for A and C and put the
solu�on in the variable AC. We subs�tute our solu�on in the eigenfunc�ons and all of its deriva�ves.

AC = solve((f0.subs(x,0), f2.subs(x,0)), A, C, dict=True)
f0, f1, f2, f3 = [f.subs(AC[0]) for f in (f0, f1, f2, f3)]
display(Eq(φ, f0))

First, simpler boundary condi�on at the right end, .

The second deriva�ve must be equal to zero, so we solve and subs�tute, also subs�tute with

D = solve(f2.subs(x, L), D, dict=True)
f0, f1, f2, f3 = [f.subs(D[0]).subs(L,LD/ld) for f in (f0, f1, f2, f3)]
display(Latex('With $\\Lambda = \\lambda\\,L$ it is'))
display(Eq(φ, f0.simplify()))

Last boundary condi�ons, equa�on of wave numbers
The last equa�on is an equa�on of equilibrium

(all the forces are directed upwards).

With , the shear is and the iner�al force is

 that can be rewri�en taking into account that : .

Let's write the expanded equa�on, collec�ng all the terms that are no :

eq = (f0*k - f0*M*ld**4*EJ/m - EJ*f3).subs(x, L).subs(L, LD/ld)
display(Eq(eq.expand().collect(B).collect(ld).collect(EJ), 0))

We have a non trivial solu�on when the term in brackets is equal to zero, to have the bracketed term we must divide both

members by

eq = (eq/EJ/ld**3/B).expand()
display(Eq(eq,0))

The behavior near is led by the last term that goes like , so to have a nice plot we mul�ply everything by

display(Eq(symbols('f'), (eq*LD**2).expand()))
plot(eq*LD**2, (LD, 0, 2));

and see that there is a root between 1.25 and 1.5. If we were interested in upper roots, we can observe that all the terms in

the LHS of our determinantal equa�ons are bounded for increasing except for the first one, that grows linearly, so to

inves�gate the other roots we may divide the equa�on by to remove that trend...

display(Eq(symbols('f'), (eq/LD).expand()))
plot(eq/LD, (LD, 2, 10));

All the RHS terms except the first have in the denominator and are bounded, so the asympto�c behaviour is controlled by

.

from scipy.optimize import bisect
f = lambdify(LD, eq, modules='math')
l1 = bisect(f, 0.5, 1.5)
Latex(r'$\lambda_1=%.6f\,\frac{1}{L}, \quad\omega_1^2=%.6f\,\frac{EJ}{mL^4}$'%(l1, l1**4))

Rayleigh Quo�ent
Using (that is, a rigid rota�on about the le� hinge) we have

and

Equa�ng the maximum energies and solving for gives

display(Latex(r'$\omega^2_{R00} = %.3f\,\frac{EJ}{mL^4}$'%(3*24/25)))

We can say that the RQ check reinforces our previouos finding...

x = L

λL Λ

V (t) + k v(t) + M (t) = 0v̈

v(t) = ϕ(x) sinωt V = −EJ = −EJ (x) sinωtv′′′ ϕ′′′

M = −M ϕ sinωtv̈ ω2 = EJ/mω2 λ4 M = −M/mEJ ϕ sinωtv̈ λ4

Λ

BEJ λ3

Λ = 0 48/Λ2 Λ2

Λ

Λ

Λ

= nπΛn+1

v = sinωtx
L

= (m dx + M) = (+ 8)mLTmax
1

2
ω2 ∫

L

0

()
x

L

2

12 1

2
ω2 1

3

= (EJ + k) = (0 + 24) .Vmax
1

2
∫

L

0

()
x

L

′′2

12 1

2

EJ

L3

ω2

= = 3 = …ω2 24EJ/L3

mL25
3

24

25

EJ

mL4

ϕ = A cos (λx) + B sin (λx) + C cosh (λx) + D sinh (λx)

ϕ = B sin (λx) + D sinh (λx)

With it isΛ = λL

ϕ = B(+ sin (λx))
sin (Λ) sinh (λx)

sinh (Λ)

BEJ (−16Λ sin (Λ) − + cos (Λ) +) = 0λ3 sin (Λ) cosh (Λ)

sinh (Λ)

48 sin (Λ)

Λ3

−16Λ sin (Λ) − + cos (Λ) + = 0
sin (Λ) cosh (Λ)

sinh (Λ)

48 sin (Λ)

Λ3

f = −16 sin (Λ) − + cos (Λ) +Λ3 sin (Λ) cosh (Λ)Λ2

sinh (Λ)
Λ2 48 sin (Λ)

Λ

f = −16 sin (Λ) − + +
sin (Λ) cosh (Λ)

Λ sinh (Λ)

cos (Λ)

Λ

48 sin (Λ)

Λ4

Out[19]:

= 1.302466 , = 2.877834λ1
1
L

ω2
1

EJ

mL4

= 2.880ω2
R00

EJ

mL4

