
Con�nuous System
Imports, stuff

from sympy import * 
init_printing(use_latex=True) 
from IPython.display import Latex 
%matplotlib inline 

Symbols
x, w2 = symbols('x omega^2') 
L, m, EJ = symbols('L m EJ', positive = True) 
A, B, C, D, ld, LD = symbols('A B C D lambda Lambda') 
f, φ = symbols('f phi') 

Supported mass and s�ffness of support
mass_coeff = 8 
stiff_coeff = 24 
k = stiff_coeff*EJ/L**3 
M = mass_coeff*m*L 

General solu�on and its deriva�ves
f0 = A*cos(ld*x) + B*sin(ld*x) + C*cosh(ld*x) + D*sinh(ld*x) 
f1 = f0.diff(x) 
f2 = f1.diff(x) 
f3 = f2.diff(x) 
display(Eq(φ,f0)) 

Le� boundary condi�ons
The eigenfunc�on and its second deriva�ve must be zero when 0 is subs�tuted for x, we solve for A and C and put the
solu�on in the variable AC. We subs�tute our solu�on in the eigenfunc�ons and all of its deriva�ves.

AC = solve((f0.subs(x,0), f2.subs(x,0)), A, C, dict=True) 
f0, f1, f2, f3 = [f.subs(AC[0]) for f in (f0, f1, f2, f3)] 
display(Eq(φ, f0)) 

First, simpler boundary condi�on at the right end, .

The second deriva�ve must be equal to zero, so we solve and subs�tute, also subs�tute  with 

D = solve(f2.subs(x, L), D, dict=True) 
f0, f1, f2, f3 = [f.subs(D[0]).subs(L,LD/ld) for f in (f0, f1, f2, f3)] 
display(Latex('With $\\Lambda = \\lambda\\,L$ it is')) 
display(Eq(φ, f0.simplify())) 

Last boundary condi�ons, equa�on of wave numbers
The last equa�on is an equa�on of equilibrium

(all the forces are directed upwards).

With , the shear is  and the iner�al force is 

 that can be rewri�en taking into account that : .

Let's write the expanded equa�on, collec�ng all the terms that are no :

eq = (f0*k - f0*M*ld**4*EJ/m - EJ*f3).subs(x, L).subs(L, LD/ld) 
display(Eq(eq.expand().collect(B).collect(ld).collect(EJ), 0)) 

We have a non trivial solu�on when the term in brackets is equal to zero, to have the bracketed term we must divide both

members by 

eq = (eq/EJ/ld**3/B).expand() 
display(Eq(eq,0)) 

The behavior near  is led by the last term that goes like , so to have a nice plot we mul�ply everything by 

display(Eq(symbols('f'), (eq*LD**2).expand())) 
plot(eq*LD**2, (LD, 0, 2)); 

and see that there is a root between 1.25 and 1.5. If we were interested in upper roots, we can observe that all the terms in

the LHS of our determinantal equa�ons are bounded for increasing  except for the first one, that grows linearly, so to

inves�gate the other roots we may divide the equa�on by  to remove that trend...

display(Eq(symbols('f'), (eq/LD).expand())) 
plot(eq/LD, (LD, 2, 10)); 

All the RHS terms except the first have  in the denominator and are bounded, so the asympto�c behaviour is controlled by

.

from scipy.optimize import bisect 
f = lambdify(LD, eq, modules='math') 
l1 = bisect(f, 0.5, 1.5) 
Latex(r'$\lambda_1=%.6f\,\frac{1}{L}, \quad\omega_1^2=%.6f\,\frac{EJ}{mL^4}$'%(l1, l1**4)) 

Rayleigh Quo�ent
Using  (that is, a rigid rota�on about the le� hinge) we have

and

Equa�ng the maximum energies and solving for  gives

display(Latex(r'$\omega^2_{R00} = %.3f\,\frac{EJ}{mL^4}$'%(3*24/25))) 

We can say that the RQ check reinforces our previouos finding...
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ϕ = A cos (λx) + B sin (λx) + C cosh (λx) + D sinh (λx)

ϕ = B sin (λx) + D sinh (λx)

With  it isΛ = λL
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