Dynamics of Structures

September 6, 2018 Written Test

12 DoF system - Support Motion

The system is characterized by the nodal degrees of freedom, the structural matrices and the load vector. With $k=E J_{L^{3}}$

$$
\overline{\mathbf{x}}=\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}, \overline{\mathbf{M}}=m\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right], \overline{\mathbf{K}}=\frac{3}{14} k\left[\begin{array}{ccc}
15 & -20 & 4 L \\
-20 & 64 & -24 L \\
4 L & -24 L & 16 L^{2}
\end{array}\right] \cdot \overline{\mathbf{p}}=\left\{\begin{array}{l}
0 \\
0 \\
1
\end{array}\right\} W(t) .
$$

Of course we must perform a static condensation to have a positive definite mass matrix, using $x \equiv x_{d}=\left\{x_{1} x_{2}\right\}^{T}$ and $x_{s}=x_{3}$, using the stiffness matrix given in the text (with $\hat{k}=3 k / 14$) it is

$$
\begin{aligned}
\mathbf{p}=\mathbf{p}_{d}-\mathbf{K}_{d S} \mathbf{K}_{s s}^{-1} \mathbf{p}_{s}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}-\left\{\begin{array}{c}
4 \hat{k} L \\
-24 \hat{k} L
\end{array}\right\} & \frac{1}{16 \hat{k} L^{2}} W(t)= \\
& =\left\{\begin{array}{c}
-1 / 4 \\
6 / 4
\end{array}\right\} \frac{W(t)}{L}=\left\{\begin{array}{c}
-1 / 4 \\
6 / 4
\end{array}\right\} \Delta k \sin 2 \omega_{0} t .
\end{aligned}
$$

The equation of motion is

$$
m\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] \ddot{\mathbf{x}}+k\left[\begin{array}{cc}
3 & -3 \\
-3 & 6
\end{array}\right] \mathbf{x}=\left\{\begin{array}{c}
-1 / 4 \\
6 / 4
\end{array}\right\} k \Delta \sin 2 \omega_{0} t .
$$

The eigenvalues and the eigenvectors follow from the equation of free vibrations,

$$
\left(\mathbf{K}-\omega^{2} \mathbf{M}\right) \psi=\mathbf{0}
$$

that admits non trivial solutions when

$$
\operatorname{det}\left(\begin{array}{cc}
3-2 \Lambda & -3 \\
-3 & 6-3 \Lambda
\end{array}\right)=0, \quad \Lambda \equiv \lambda^{2}=\frac{\omega^{2} m}{k}=\frac{\omega^{2}}{\omega_{0}^{2}} .
$$

Expanding the determinant we have $6 \Lambda^{2}-21 \Lambda+9=0$ and it is

$$
\Lambda_{1,2}=\frac{21 \mp \sqrt{21^{2}-4 \cdot 6 \cdot 9}}{2 \cdot 6}=\frac{21 \mp 15}{12}=\left\{\begin{array}{l}
1 / 2 \\
3
\end{array}\right.
$$

The eigenvectors can be determined using the one of the equations of free vibrations, here the first one

$$
\left(3-2^{1 / 2}\right) \psi_{11}=3 \psi_{21}, \quad(3-2 \cdot 3) \psi_{12}=3 \psi_{22} .
$$

Using arbitrarily $\psi_{21}=\psi_{12}=2$ and solving for the remaining unknowns gives

$$
\Psi=\left[\begin{array}{ll}
+3 & +2 \\
+2 & -2
\end{array}\right]
$$

and this choice leads to a modal mass matrix

$$
\mathbf{M}^{\star}=\boldsymbol{\Psi}^{T} \mathbf{M} \Psi=m\left[\begin{array}{cc}
30 & 0 \\
0 & 20
\end{array}\right] .
$$

The modal equation of motion follows from the identity $\mathbf{x}=\Psi \mathbf{q}$, so that, premultiplying member by member by Ψ^{T} using $\delta=\Delta \sin 2 \omega_{0} t$ we have

$$
\mathbf{M}^{\star} \ddot{\mathbf{q}}+\mathbf{K}^{\star} \mathbf{q}=\frac{1}{4} k \delta \Psi^{T}\left\{\begin{array}{c}
-1 \\
6
\end{array}\right\}=\frac{1}{4} k \delta\left[\begin{array}{cc}
+3 & +2 \\
+2 & -2
\end{array}\right]\left\{\begin{array}{c}
-1 \\
6
\end{array}\right\}=k \delta\left\{\begin{array}{c}
+9 / 4 \\
-14 / 4
\end{array}\right\} .
$$

Premultiplying by $\mathbf{M}^{\star-1}$ and writing separately the two equations

$$
\begin{aligned}
\ddot{q}_{1}+1 / 2 \omega_{0}^{2} q_{1} & =+3 / 40 \omega_{0}^{2} \Delta \sin 2 \omega_{0} t \\
\ddot{q}_{2}+3 \omega_{0}^{2} q_{2} & =-7 / 40 \omega_{0}^{2} \Delta \sin 2 \omega_{0} t
\end{aligned}
$$

The particular integral for a harmonic excitation,

$$
\ddot{q}_{i}+\lambda_{i}^{2} \omega_{0}^{2} q_{i}=\omega_{0}^{2} d_{i} \sin \lambda_{0} \omega_{0} t
$$

is $\xi_{i}(t)=c_{i} \sin \lambda_{0} \omega_{0} t$; substituting and simplifying

$$
c_{i}\left(\lambda_{i}^{2}-\lambda_{0}^{2}\right)=d_{i}
$$

so that, substituting the numerical values and solving, we have

$$
c_{1}=\frac{+3 / 40 \Delta}{1 / 2-4}=-\frac{3}{140} \Delta, \quad c_{2}=\frac{-7 / 40 \Delta}{3-4}=+\frac{7}{40} \Delta .
$$

The general integral is

$$
q_{i}(t)=a_{i} \sin \lambda_{i} \omega_{0} t+b_{i} \cos \lambda_{i} \omega_{0} t+c_{i} \sin \lambda_{0} \omega_{0} t
$$

and, starting from rest conditions, it is

$$
b_{i}=0, \quad a_{i}=-c_{i} \frac{\lambda_{0}}{\lambda_{i}}
$$

or, with the numerical values,

$$
\begin{aligned}
a_{1}=-\left(-\frac{3 \Delta}{140} \frac{2}{\sqrt{1 / 2}}\right)=\frac{3 \sqrt{2} \Delta}{70}= & +0.0606092 \Delta, \\
a_{2} & =-\left(+\frac{7 \Delta}{40} \frac{2}{\sqrt{3}}\right)=-\frac{7 \sqrt{3} \Delta}{60}=-0.202073 \Delta .
\end{aligned}
$$

The displacement x_{2} at $t=\pi / \omega_{0}$ follows from the modal displacements,

$$
q_{1}\left(\pi / \omega_{0}\right)=+0.0606092 \Delta \sin \pi / \sqrt{2}, \quad q_{2}\left(\pi / \omega_{0}\right)=-0.202073 \Delta \sin \sqrt{3} \pi
$$

(taking into account that $\sin 2 \omega_{0} \pi / \omega_{0}=\sin 2 \pi \equiv 0$) and because it is $x_{2}=$ $2\left(q_{1}-q_{2}\right)$ we have, substituting the numerical values,

$$
x_{2}\left(\pi / \omega_{0}\right)=-0.205013 \Delta
$$

