
2DoF

Giacomo Boffi

2 DOF System

D E F

A B C

P (t) = P

3m

4m

L L

L

The system in figure is composed of a single uniform beam supporting two different lumped
masses.

Neglecting the beam mass and its axial deformability, the system has two dynamic degrees
of freedom, x1 the vertical displacement in B and x2, the vertical displacement in E.

The stiffness matrix being

K=
2

5

EJ

L3

[
4 1

1 4

]
determine the eigenvalues (normalized with respect to ω20=EJ/L3) and the eigenvectors

of the system (Note: it may be convenient to operate with non-normalied eigenvectors).
The system is at rest when, at time t = 0, it is loaded by a constant vertical force P ,

applied in C.
Introducing an additional degree of freedom x3, the vertical displacement of C, the

augmented stiffness matrix is

K=
3

28

EJ

L3

 92 6 −34
6 15 −1
−34 −1 15

and it is possible to write the dynamic equations of equilibrium in terms of equivalent nodal

loads.

1. Write the equations of dynamic equilibrium in matrix form but detailing the values of
the equivalent nodal loads.

2. Write the two equations of equilibrium in modal coordinates.
3. Write the expressions of the modal responses.

1

Solution

Structural matrices

You have the stiffness matrices, initially I have not. . . here I compute the flexibility matrix
for the 3 DOF system starting with the diagrams of the bending moments

1

1

1

1

1

1

11

21

2

1

2L

L

−L

next I write the polynomials that represent the bending moments and, using the principle
of virtual works, I get the flexibility.

Ms = [[p(0, 0), p(1, 0), p(-1, 1), p(0, 0), p(0, 0)],
[p(0, 0), p(0, 0), p(-1, 0), p(1, -1), p(0, 0)],
[p(1, 0), p(1, 1), p(-2, 2), p(0, 0), p(0, 0)]]

Ls = [1,1,1,1,1]
F = np.array([[sum(i(*mcl) for mcl in zip(M, C, Ls))

for M in Ms] for C in Ms])

dl(r'\boldsymbol F = \frac{L^3}{6EJ}'+pmat(6*F))

F =
L3

6EJ

 4.000 −1.000 9.000

−1.000 4.000 −2.000
9.000 −2.000 24.000

The stiffness associated with the non-dynamic degree of freedom is obviously the inverse

of the 3x3 flexibility

K = inv(F)
dl(r'\overline{\boldsymbol K} = \frac{3EJ}{28L^3}'+pmat(28*K/3))

K=
3EJ

28L3

 92.000 6.000 −34.000
6.000 15.000 −1.000
−34.000 −1.000 15.000

On the other hand, the stiffness associated with the dynamic degrees of freedom (that

could be computed using the static condensation procedure) is computed (in a simpler way)
as the inverse of the corresponding partition of the flexibility.

The mass matrix is easy. . .

2

F22 = F[:2,:2]
K22 = inv(F22)
M = np.array(((3,0),(0,4)))
= np.array(((1,0),(0,1)))

dl(r'\boldsymbol K = \frac{2EJ}{5L^3}\,' + pmat(K22*5/2))
dl(r'\boldsymbol M = m\,' + pmat(M))

K=
2EJ

5L3

[
4.000 1.000

1.000 4.000

]

M=m

[
3.000 0.000

0.000 4.000

]

Eigenproblem and modal masses

Here we solve the eigenproblem, put the eigenvalues in a 2x2 matrix, de-normalize the eigen-
vectors (because we want to avoid irrational numbers) and compute the modal mass matrix.

evals, evecs = eigh(K22, M)
Lambda = np.diag(evals)
evecs[:,0] /= evecs[0,0]
evecs[:,1] /= evecs[1,1]
Mstar = evecs.T@M@evecs

dl(r'\boldsymbol \Lambda = '+ pmat(Lambda) +
r',\qquad\boldsymbol \Omega^2 = \omega_0^2\,\boldsymbol\Lambda')

dl(r'\boldsymbol \Psi = ' + pmat(evecs))
dl(r'\boldsymbol M^\star = m\,' + pmat(Mstar))

Λ=

[
0.333 0.000

0.000 0.600

]
, Ω2=ω20Λ

Ψ=

[
1.000 2.000

−1.500 1.000

]

M?=m

[
12.000 0.000

0.000 16.000

]

Equation of Motion

The efficace load, using the static condensation procedure with the index d denoting dynamic
DOF’s and the index s denoting static DOF’s is

peff=pd−KdsK−1ss ps.

In our case pd=0, Kss is a scalar and ps=P is a scalar as well, so we can write

peff = 0 - K[:2,2]/K[2,2]
dl(r'\boldsymbol p_\text{ eff} = ' + pmat(15*peff[:,None]) + r'\,\frac{P}{15}')

3

p eff=

[
34.000

1.000

]
P

15

and the equation of motion is

Mẍ+Kx=

{
34

1

}
P

15
.

If we write the EoM in modal coordinates

M?q̈+ω20M
?Λq=ΨTpeff=p

?

pstar = evecs.T @ peff
dl(r'''\boldsymbol M^\star\,\ddot{\boldsymbol q} +

\omega_0^2\boldsymbol M^\star\boldsymbol\Lambda\boldsymbol q = ''' +
pmat(30*pstar[:,None]) + r'\,\frac{P}{30}')

M?q̈+ω20M
?Λq=

[
65.000

138.000

]
P

30

Eventually we premultiply every term by M?−1 to have the equation of motion written in
terms of accelerations

Gamma = inv(Mstar) @ pstar
dl(r'''\ddot{\boldsymbol q} + \omega_0^2\boldsymbol\Lambda\boldsymbol q

= \boldsymbol\Gamma =''' + pmat(720*Gamma[:,None]) + r'\,\frac{P}{720\,m}')

q̈+ω20Λq=Γ=

[
130.000

207.000

]
P

720m

The particular integrals

In our case the particular integral is simply a constant term, ξi=γi/(λiω0)2 and, taking into
account that mω20=k, we can make the position δ=P/k and write

C = inv(Lambda) @ Gamma
dl(r'\boldsymbol \Xi = ' + pmat(48*C[:,None]) + r'\,\frac{\delta}{48}')

Ξ=

[
26.000

23.000

]
δ

48

The general integrals

The general integral being qi =Ai cos(λiω0t)+Bi sin(λiω0t)+Ci by imposing q̇i(0) = 0 we
have Bi=0 and by imposing qi(0)=0 we have Ai=−Ci , hence

qi(t)=Ci(1−cos(λiω0t))
and, substituting the numerical values we have

4

for i in range(2):
j = i+1
dl(r'q_{%d}(t) = %+8.6f\,\delta\,(1-\cos(%f\,\omega_0t))'%(j,C[i],np.sqrt(Lambda[i,i])))

q1(t)=+0.541667δ(1−cos(0.577350ω0t))

q2(t)=+0.479167δ(1−cos(0.774597ω0t))

Initialization Cell

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy.linalg import eigh, inv
from IPython.display import Latex, HTML

def p(*l):
'wrapper around poly1d class to modify call syntax'
return np.poly1d(l)

def i(p,q,l):
'''computes definite integral of p*q from 0 to l
p and q are instances of poly1d class'''

pqi = (p*q).integ()
return pqi(l)-pqi(0)

def pmat(mat, fmt='%.3f'):
'returns a LaTeX string representing a 2D array'
inside = r'\\'.join('&'.join(fmt%x for x in row) for row in mat)
return r'\begin{bmatrix}'+inside+r'\end{bmatrix}'

def dl(s):
'rich display a LaTeX string (surrounded by "$$")'
display(Latex('$$'+s+'$$'))

5

	2 DOF System
	Solution
	Structural matrices
	Eigenproblem and modal masses
	Equation of Motion
	The particular integrals
	The general integrals

	Initialization Cell

