Dynamics of Structures

January 29, 2019 Written Test

A perfect score is 36 . The minimum score for admission is 18 .

2 DoF System

Figure 1
The undamped dynamic system in figure 1 is composed of a single, uniform beam, its flexural stiffness $E J=$ const., supporting two different masses.

Neglecting the beam mass and axial deformability, we have two dynamic DoF x_{1} and x_{2}, here the vertical displacement of \mathcal{B} and \mathcal{E} respectively.

Eigenvalues and Eigenvectors

1. Determine the eigenvalues of the system in terms of a reference value $\omega_{0}^{2}=E J / m L^{3}$, with the provision that the system's stiffness matrix is

$$
\boldsymbol{K}=\frac{2}{5} \frac{E J}{L^{3}}\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right]
$$

2. Determine the eigenvectors of the system.

Please consider to set $\psi_{11}=\psi_{22}=1$ and to normalize not the eigenvectors.

Dynamic Response

The system is undeformed and at rest when it is excited by a constant vertical force P, suddenly applied at $t=0$ at point \mathcal{C}

$$
P(t)= \begin{cases}0 & t<0 \\ P & t \geq 0\end{cases}
$$

As you know, to study the dynamic response one has to introduce an additional degree of freedom x_{3}, the vertical displacement of \mathcal{C}. Taking into account the additional DoF the augmented stiffness matrix $\overline{\boldsymbol{K}}$ of the 3 DoF system is

$$
\overline{\boldsymbol{K}}=\frac{3}{28} \frac{E J}{L^{3}}\left[\begin{array}{ccc}
92 & 6 & -34 \\
6 & 15 & -1 \\
-34 & -1 & 15
\end{array}\right] .
$$

Providing the numerical values of all the coefficients involved,
3. write the equation of motion in nodal coordinates for the 2 DoF system,
4. write the equation of motion in modal coordinates and
5. write the expressions of the modal responses for $t \geq 0$.

Numerical Integration

A dynamic system, its mass $m=1315 \mathrm{~kg}$, its stiffness $k=325 \mathrm{kN} \mathrm{m}^{-1}$ and its viscous damping $c=15.7 \mathrm{kN} \mathrm{s} \mathrm{m}^{-1}$ is at rest when it is subjected to a dynamic loading

$$
p(t)=1.155 \mathrm{kN} \begin{cases}\sin \left(\pi t / t_{0}\right) & 0 \leq t \leq t_{0} \\ 0 & \text { otherwise }\end{cases}
$$

where $t_{0}=60 \mathrm{~ms}$.
Find the displacement and the velocity of the system at $t=t_{0}$ using the constant acceleration algorithm and a time step $h=20 \mathrm{~ms}$.

Rayleigh Quotient

Figure 2
The system in figure 2 is composed of two uniform rigid bars, each one having a mass $m=\bar{m} L$, connected one to the other and to the system of reference by two different flexural springs.

Using the Rayleigh quotient method find a first approximation to the natural period of vibration of the system.

Hint: θ_{1}, θ_{2}.

