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Introduction

A periodic loading is characterized by the identity

p(t) = p(t+ T )

where T is the period of the loading, and ω1 =
2π
T is its principal frequency.

           

p

t

p(t+ T )p(t)

T
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Introduction

Fourier theorem asserts that periodic loadings can be represented by an infinite series
of harmonic functions. E.g., for an antisymmetric periodic loading of period T we have
a series composed of antisymmetric harmonic functions

p(t) = p(−t) =
∑∞

j=1 pj sin jω1t =
∑∞

j=1 pj sinωjt (with ωj = j 2π
T ).
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Introduction

The steady-state response of a SDOF system for a harmonic loading
∆pj(t) = pj sinωjt is known; with βj = ωj/ωn the s-s response is:

xj,s-s =
pj
k D(βj , ζ) sin(ωjt− θ(βj , ζ)) = aj cosωjt+ bj sinωjt.

The response to an individual harmonic component can be interpreted as a term of
another different Fourier series, that possibly represents the steady-state response of
the dynamic system to p(t).

It can be shown that, under very wide assumptions, the infinite series whose terms are
the s-s responses to the harmonic components of p(t) is indeed the Fourier series
representation of the SDOF steady-state response to p(t).
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Introduction

Due to the asymptotic behaviour ofD(β; ζ) (D goes

to zero as β−2 for β ≫ 1) it is apparent that a good
approximation to the steady-state response can
be obtained using a limited number of
low-frequency terms.
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Fourier Series

Using Fourier theorem any practical periodic loading can be expressed as a series of harmonic
loading terms.

We can represent a loading p(t), of period Tp, using its Fourier series expansion

p(t) =

∞∑
j=0

aj cosωjt+

∞∑
j=0

bj sinωjt, ωj = j ω1 = j
2π
Tp

.

Considering the orthogonality relationship over the period Tp,∫ Tp

0
cosωit cosωjt dt =

∫ Tp

0
sinωit sinωjt dt = δij

Tp
2
,

∫ Tp

0
cosωit sinωjt dt = 0, i, j = 0, . . . ,∞

the amplitudes of the harmonic components are

a0 =
1
Tp

∫ Tp

0
p(t) dt, aj =

2
Tp

∫ Tp

0
p(t) cosωjt dt, b0 = 0 bj =

2
Tp

∫ Tp

0
p(t) sinωjt dt.

Note that the case i = j = 0 is a special case...
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Fourier Coefficients

If p(t) has not an analytical representation and must be measured experimentally or computed
numerically, we may assume that it is possible

(a) to divide the period inN equal parts∆t = Tp/N ,

(b) measure or compute p(t) at a discrete set of instants t1, t2, . . . , tN , with tm = m∆t,

obtaining a discrete set of values pm, m = 1, . . . , N (note that p0 = pN by periodicity).

Under these assumptions the, e.g., cosine-wave amplitude coefficients can be approximated
using the trapezoidal rule of integration (note that p0 = pN and

aj ≊
2∆t

Tp

N∑
m=1

pm cosωjtm =
2
N

N∑
m=1

pm cos(jω1m∆t) =
2
N

N∑
m=1

pm cos
jm 2π
N

.
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Periodicity

The coefficients of the Discrete Fourier Series are periodic,
with periodN .

E.g., here it is how we can compute aj+N according to its definition:

aj+N =
2
N

N∑
m=1

pm cos
2(j +N)mπ

N
=

2
N

N∑
m=1

pm cos
2(jm+Nm)π

N

=
2
N

N∑
m=1

pm cos

(
2jmπ

N
+ 2mπ

)
=

2
N

N∑
m=1

pm cos
2 jmπ

N
= aj
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Exponential Form

The Fourier series can also be written in terms of exponentials of imaginary argument,

p(t) =

∞∑
j=−∞

Pj exp iωjt

where the complex amplitude coefficients are given by

Pj =
1
Tp

∫ Tp

0
p(t) exp−iωjt dt, j = −∞, . . . ,+∞.

For a sampled pm we can write, using the trapezoidal integration rule and substituting
tm = m∆t = mTp/N , ωj = j 2π/Tp:

Pj ≊
1
N

N∑
m=1

pm exp(−i
2π j m

N
).

For sampled input also the coefficients of the exponential series are periodic, Pj+N = Pj .

Giacomo Boffi SDOF linear oscillator
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Undamped Response

We have seen that the steady-state response to the jth sine-wave harmonic can be
written as

xj =
bj
k

[
1

1− β2
j

]
sinωjt, βj = ωj/ωn,

analogously, for the jth cosine-wave harmonic,

xj =
aj
k

[
1

1− β2
j

]
cosωjt.

Finally, we write

x(t) =
1
k

a0 +

∞∑
j=1

[
1

1− β2
j

]
(aj cosωjt+ bj sinωjt)

 .
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Damped Response

In the case of a damped oscillator, we must substitute the steady state response for
both the jth sine- and cosine-wave harmonic,

x(t) =
a0
k

+
1
k

∞∑
j=1

+(1− β2
j ) aj − 2ζβj bj

(1− β2
j )

2 + (2ζβj)2
cosωjt+

+
1
k

∞∑
j=1

+2ζβj aj + (1− β2
j ) bj

(1− β2
j )

2 + (2ζβj)2
sinωjt.

As usual, the exponential notation is neater,

x(t) =

∞∑
j=−∞

Pj

k

exp iωjt

(1− β2
j ) + i (2ζβj)

.
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Example

As an example, consider the loading p(t) = max{p0 sin 2πt
Tp

, 0}

0

0.5 p0

p0

   0.0 0.5 Tp T 1.5 Tp 2Tp

p0 max[sin(2 π t/Tp),0.0]
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Example

As an example, consider the loading p(t) = max{p0 sin 2πt
Tp

, 0}

a0 =
1
Tp

∫ Tp/2

0
po sin

2πt
Tp

dt =
p0
π
,

aj =
2
Tp

∫ Tp/2

0
po sin

2πt
Tp

cos
2πjt
Tp

dt =

0 for j odd
p0
π

[
2

1−j2

]
for j even,

bj =
2
Tp

∫ Tp/2

0
po sin

2πt
Tp

sin
2πjt
Tp

dt =


p0
2 for j = 1

0 for n > 1.
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Example cont.

Assuming β1 = 3/4, from p = p0
π

(
1+ π

2 sinω1t− 2
3 cos 2ω1t− 2

15 cos 4ω2t− . . .
)
with the

dynamic amplifiction factors

D1 =
1

1− (1 3
4 )

2 =
16
7
, D2 =

1
1− (2 3

4 )
2 = −4

5
, D4 =

1
1− (4 3

4 )
2 = −1

8
, D6 = . . .

etc, we have

x(t) =
p0
kπ

(
1+

8π
7

sinω1t+
8
15

cos 2ω1t+
1
60

cos 4ω1t+ . . .

)

Take note, these solutions are particular solutions! If your solution has to respect given initial
conditions, you must consider also the homogeneous solution.
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Example cont.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0  1  2  3

x
(t

) 
k 
π
 /

 p
o

t/Tp

xi = Σj=1,..,i aj cosωjt + bj sinωjt

x0
x1
x2
x4
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Non periodic loadings

It is possible to extend the Fourier analysis to non periodic loading. Let’s start from the
Fourier series representation of the load p(t),

p(t) =

+∞∑
−∞

Pr exp(iωrt), ωr = r∆ω, ∆ω =
2π
Tp

,

introducing P (iωr) = PrTp and substituting,

p(t) =
1
Tp

+∞∑
−∞

P (iωr) exp(iωrt) =
∆ω

2π

+∞∑
−∞

P (iωr) exp(iωrt).

Due to periodicity, we can modify the extremes of integration in the expression for the
complex amplitudes,

P (iωr) =

∫ +Tp/2

−Tp/2
p(t) exp(−iωrt) dt.

Giacomo Boffi SDOF linear oscillator
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Non periodic loadings (2)

If the loading period is extended to infinity to represent the non-periodicity of the loading (Tp → ∞)
then (a) the frequency increment becomes infinitesimal (∆ω = 2π

Tp
→ dω) and (b) the discrete frequency

ωr becomes a continuous variable, ω.

In the limit, for Tp → ∞we can then write

p(t) =
1
2π

∫ +∞

−∞
P (iω) exp(iωt) dω

P (iω) =

∫ +∞

−∞
p(t) exp(−iωt) dt,

which are known as the inverse and the direct Fourier Transforms, respectively, and are collectively
known as the Fourier transform pair.
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SDOF Response

In analogy to what we have seen for periodic loads, the response of a damped SDOF system can be
written in terms ofH(iω), the complex frequency response function,

x(t) =
1
2π

∫ +∞

−∞
H(iω)P (iω) exp iωt dt, where

H(iω) =
1
k

[
1

(1− β2) + i(2ζβ)

]
=

1
k

[
(1− β2)− i(2ζβ)
(1− β2)2 + (2ζβ)2

]
, β =

ω

ωn
.

To obtain the response through frequency domain, you should evaluate the above integral, but analytical
integration is not always possible, and when it is possible, it is usually very difficult, implying contour
integration in the complex plane (for an example, see Example E6-3 in Clough Penzien).
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Discrete Fourier Transform

To overcome the analytical difficulties associated with the inverse Fourier transform, one can use
appropriate numerical methods, leading to good approximations.

Consider a loading of finite period Tp, divided into N equal intervals∆t = Tp/N , and the set of values
ps = p(ts) = p(s∆t).

We can approximate the complex amplitude coefficients with a sum,

Pr =
1
Tp

∫ Tp

0
p(t) exp(−iωrt) dt, that, by trapezoidal rule, is

≊ 1
N∆t

(
∆t

N−1∑
s=0

ps exp(−iωrts)

)
=

1
N

N−1∑
s=0

ps exp(−i
2πrs
N

).
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Discrete Fourier Transform (2)

In the last two passages we have used the relations
pN = p0, exp(iωrtN ) = exp(ir∆ωTp) = exp(ir2π) = exp(i0)

ωr ts = r∆ω s∆t = rs
2π
Tp

Tp

N
=

2π rs

N
.

Take note that the discrete function exp(−i 2πrs
N

), defined for integer r, s is periodic with periodN ,
implying that the complex amplitude coefficients are themselves periodic with periodN .

Pr+N = Pr

Starting in the time domain withN distinct complex numbers, ps, we have found that in the frequency
domain our load is described byN distinct complex numbers, Pr , so that we can say that our function is
described by the same amount of information in both domains.
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Aliasing

Only N/2 distinct frequencies (
∑N−1

0 =∑+N/2
−N/2) contribute to the load represen-

tation, what if the frequency contentof the
loading has contributions from frequen-
cies higher than ωN/2? What happens is
aliasing, i.e., the upper frequencies con-
tributions are mapped to contributions of
lesser frequency.

-1

-0.5

 0

 0.5

 1

0 1/4 Tp

sin(21 * (2π)/Tp * s Tp/N), N=20, s=0,..,20
sin(22 * (2π)/Tp * s Tp/N), N=20, s=0,..,20

See the plot above: the contributions from the high frequency sines,when sampled, are indistinguishable
from the contributions from lower frequency components, i.e., are aliased to lower frequencies!
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Aliasing (2)

• The maximum frequency that can be described in the DFT is called the Nyquist
frequency, ωNy =

1
2
2π
∆t .

• It is usual in signal analysis to remove the signal’s higher frequency components
preprocessing the signal with a filter or a digital filter.

• It is worth noting that the resolution of the DFT in the frequency domain for a
given sampling rate is proportional to the number of samples, i.e., to the duration
of the sample.
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The Fast Fourier Transform

The operation count in a DFT is in the order of N2.

A Fast Fourier Transform is an algorithm that reduces the number of arithmetic
operations needed to compute a DFT.

The first and simpler FFT algorithm is the Decimation in Time algorithm by Cooley and
Tukey (1965).

The algorithm introduced by Cooley and Tukey is quite complex because it allows to
proceed without additional memory, we will describe a different algorithm, that is
based on the same principles but requires additional memory and it’s rather simpler
than the original one.

Giacomo Boffi SDOF linear oscillator



Response Fourier Transform The DFT General Load H(ω) vsh(t) The DFT Aliasing The FFT

The Fast Fourier Transform

The operation count in a DFT is in the order of N2.

A Fast Fourier Transform is an algorithm that reduces the number of arithmetic
operations needed to compute a DFT.

The first and simpler FFT algorithm is the Decimation in Time algorithm by Cooley and
Tukey (1965).

The algorithm introduced by Cooley and Tukey is quite complex because it allows to
proceed without additional memory, we will describe a different algorithm, that is
based on the same principles but requires additional memory and it’s rather simpler
than the original one.

Giacomo Boffi SDOF linear oscillator



Response Fourier Transform The DFT General Load H(ω) vsh(t) The DFT Aliasing The FFT

Decimation in Time DFT

For simplicity, assume that N is even and split the DFT summation in two separate sums, with
even and odd indices

Xr =

N−1∑
s=0

xse
− 2πi

N sr, r = 0, . . . , N − 1

=

N/2−1∑
q=0

x2qe
− 2πi

N (2q)r +

N/2−1∑
q=0

x2q+1e
− 2πi

N (2q+1)r.

Collecting e−
2πi
N r in the second term and letting 2q

N = q
N/2 , we have

Xr =

N/2−1∑
q=0

x2qe
− 2πi

N/2 qr + e−
2πi
N r

N/2−1∑
q=0

x2q+1e
− 2πi

N/2 qr,

i.e., we have two DFT’s of lengthN/2. The operations count is just 2(N/2)2 = N 2/2, but we
have to combine these two halves in the full DFT.
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Decimation in Time DFT

Say that
Xr = Er + e−

2πi
N

rOr

whereEr andOr are the even and odd half-DFT’s, of which we computed only coefficients from 0 to
N/2− 1.

To get the full sequence we have to note that

1. theE andO DFT’s are periodic with periodN/2, and

2. exp(−2πi(r +N/2)/N) = e−πi exp(−2πir/N) = − exp(−2πir/N),

so that we can write

Xr =

Er + exp(−2πir/N)Or if r < N/2,

Er−N/2 − exp(−2πir/N)Or−N/2 if r ≥ N/2.

The algorithm that was outlined can be applied to the computation of each of the half-DFT’s whenN/2
were even, so that the operation count goes toN 2/4. IfN/4were even ...
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Pseudocode for CT algorithm

def fft2(X, N):
if N = 1 then

Y = X
else

Y0 = fft2(X0, N/2)
Y1 = fft2(X1, N/2)
for k = 0 to N/2-1
Y_k = Y0_k + exp(2 pi i k/N) Y1_k
Y_(k+N/2) = Y0_k - exp(2 pi i k/N) Y1_k

endfor
endif

return Y
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from cmath import exp, pi

def d_fft(x,n):
”Direct fft of x, a list of n=2**m complex values”
return _fft(x,n,[exp(-2*pi*1j*k/n) for k in range(n/2)])

def i_fft(x,n):
”Inverse fft of x, a list of n=2**m complex values”
transform = _fft(x,n,[exp(+2*pi*1j*k/n) for k in range(n/2)])]
return [x/n for x in transform]



def _fft(x, n, tw):
”””Decimation in Time FFT, to be called by d_fft and i_fft.
x is the signal to transform, a list of complex values
n is its length, results are undefined if n is not a power of 2
tw is a list of twiddle factors, precomputed by the caller

returns a list of complex values,not normalized if inverse transform”””

if n == 1: return x # bottom reached, DFT of a length 1 vec x is x

# call fft with the even and the odd coefficients in x
# the results are the so called even and odd DFT’s
e, o = _fft(x[0::2], n/2, tw[::2]), _fft(x[1::2], n/2, tw[::2])

# assemble the partial results:
# 1st half of full DFT is put in even DFT, 2nd half in odd DFT
for k in range(n/2):

e[k], o[k] = e[k]+tw[k]*o[k], e[k]-tw[k]*o[k]

# concatenate the two halves of the DFT and return to caller
return e + o



If we strip all comments, our FFT function becomes

def _fft(x, n, tw):
if n==1:return x
e,o=_fft(x[0::2],n/2,tw[::2]),_fft(x[1::2],n/2,tw[::2])
for k in range(n/2):e[k],o[k]=e[k]+tw[k]*o[k],e[k]-tw[k]*o[k]
return e+o
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Dynamic Response (1)

To evaluate the dynamic response of a linear SDOF system in the frequency domain, use the
inverse DFT,

xs =

N−1∑
r=0

Vr exp(i
2π rs

N
), s = 0, 1, . . . , N − 1

where Vr = Hr Pr. Pr are the discrete complex amplitude coefficients computed using the
direct DFT, andHr is the discretization of the complex frequency response function, that for
viscous damping is

Hr =
1
k

[
1

(1− β2
r) + i(2ζβr)

]
=

1
k

[
(1− β2

r)− i(2ζβr)

(1− β2
r)

2 + (2ζβr)2

]
, βr =

ωr

ωn
.

while for hysteretic damping it is

Hr =
1
k

[
1

(1− β2
r) + i(2ζ)

]
=

1
k

[
(1− β2

r)− i(2ζ)
(1− β2

r)
2 + (2ζ)2

]
.
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Dynamic Response (2)

Some word of caution...

If you’re going to approach the application of the complex frequency response function
without proper concern, you’re likely to be hurt.

Let’s say∆ω = 1.0,N = 32, ωn = 3.5 and r = 30, what do you think it is the value of β30? If
you are thinking β30 = 30∆ω/ωn = 30/3.5 ≈ 8.57 you’rewrong!

Due to aliasing, ωr =

{
r∆ω r ≤ N/2
(r −N)∆ω r > N/2

,

note that in the upper part of the DFT the coefficients correspond to negative frequencies and,
staying within our example, it is β30 = (30− 32)× 1/3.5 ≈ −0.571.

IfN is even, PN/2 is the coefficient corresponding to the Nyquist frequency, ifN is odd PN−1
2

corresponds to the largest positive frequency, while PN+1
2

corresponds to the largest negative
frequency.
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Response to General Dynamic Loading

Response to Periodic Loading

Fourier Transform

The Discrete Fourier Transform

Response to General Dynamic Loadings

Response to infinitesimal impulse

Duhamel Integral

Numerical integration of Duhamel integral

Undamped SDOF systems

Damped SDOF systems

Relationship between time and frequency domain
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Response to a short duration load

An approximate procedure to evaluate the maximum displacement for a short impulse
loading is based on the impulse-momentum relationship,

m∆ẋ =

∫ t0

0
[p(t)− kx(t)] dt.

When one notes that, for small t0, the displacement is of the order of t20 while the
velocity is in the order of t0, it is apparent that the kx term may be dropped from the
above expression, i.e.,

m∆ẋ ≊
∫ t0

0
p(t) dt.
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Response to a short duration load

Using the previous approximation, the velocity at time t0 is

ẋ(t0) =
1
m

∫ t0

0
p(t) dt,

and considering again a negligibly small displacement at the end of the loading,
x(t0) ≊ 0, one has

x(t− t0) ≊
1

mωn

∫ t0

0
p(t) dt sinωn(t− t0).

Please note that the above equation is exact for an infinitesimal impulse loading.

dx(t− τ) =
p(τ) dτ

mωn
sinωn(t− τ), t > τ,
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Undamped SDOF

For an infinitesimal impulse, the impulse-momentum is exactly p(τ) dτ and the
response is

dx(t− τ) =
p(τ) dτ

mωn
sinωn(t− τ), t > τ,

and to evaluate the response at time t one has simply to sum all the infinitesimal
contributions for τ < t,

x(t) =
1

mωn

∫ t

0
p(τ) sinωn(t− τ) dτ, t > 0.

This relation is known as the Duhamel integral, and tacitly depends on initial rest
conditions for the system.

Jean-Marie Constant Duhamel (Saint-Malo, 5 February 1797— Paris, 29 April 1872)
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Damped SDOF

The derivation of the equation of motion for a generic load is analogous to what we
have seen for undamped SDOF, the infinitesimal contribution to the response at time t
of the load at time τ is

dx(t) =
p(τ)

mωD
dτ sinωD(t− τ) exp(−ζωn(t− τ)) t ≥ τ

and integrating all infinitesimal contributions one has

x(t) =
1

mωD

∫ t

0
p(τ) sinωD(t− τ) exp(−ζωn(t− τ)) dτ, t ≥ 0.
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Evaluation of Duhamel integral, undamped

Using the trig identity

sin(ωnt− ωnτ) = sinωnt cosωnτ − cosωnt sinωnτ

the Duhamel integral is rewritten as

x(t) =

∫ t
0 p(τ) cosωnτ dτ

mωn
sinωnt −

∫ t
0 p(τ) sinωnτ dτ

mωn
cosωnt

= A(t) sinωnt− B(t) cosωnt

where A(t) = 1
mωn

∫ t
0 p(τ) cosωnτ dτ

B(t) = 1
mωn

∫ t
0 p(τ) sinωnτ dτ
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Numerical evaluation of Duhamel integral, undamped

Usual numerical procedures can be applied to the evaluation ofA and B, e.g., using
the trapezoidal rule, one can have, withAn = A(n∆τ), yn = p(n∆τ) cos(n∆τ) and
zn = p(n∆τ) sin(n∆τ)we can write

An+1 = An +
∆τ

2mωn
(yn + yn+1) ,

Bn+1 = Bn +
∆τ

2mωn
(zn + zn+1) .
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Evaluation of Duhamel integral, damped

For a damped system, it can be shown that

x(t) = A(t) sinωDt− B(t) cosωDt

with

A(t) =
exp−ζωnt

mωD

∫ t

0
p(τ) exp ζωnτ cosωDτ dτ ,

B(t) = exp−ζωnt

mωD

∫ t

0
p(τ) exp ζωnτ sinωDτ dτ .
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Numerical evaluation of Duhamel integral, damped

Numerically, using e.g. Simpson integration rule and yn = p(n∆τ) cosωDτ ,

An+2 = An exp(−2ζωn∆τ)+

∆τ

3mωD
[yn exp(−2ζωn∆τ) + 4yn+1 exp(−ζωn∆τ) + yn+2]

n = 0, 2, 4, · · ·

(You can write a similar relationship for Bn+2)
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Transfer Functions

The response of a linear SDOF system to arbitrary loading can be evaluated by a
convolution integral in the time domain,

x(t) =

∫ t

0
p(τ)h(t− τ) dτ,

with the unit impulse response function h(t) = 1
mωD

exp(−ζωnt) sin(ωDt), or through
the frequency domain using the Fourier integral

x(t) =

∫ +∞

−∞
H(ω)P (ω) exp(iωt) dω,

whereH(ω) is the complex frequency response function.
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Transfer Functions

These response functions, or transfer functions, are connected by the direct and
inverse Fourier transforms:

H(ω) =

∫ +∞

−∞
h(t) exp(−iωt) dt,

h(t) =
1
2π

∫ +∞

−∞
H(ω) exp(iωt) dω.
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Relationship of transfer functions

Wewrite the response and its Fourier transform:

x(t) =

∫ t

0
p(τ)h(t− τ) dτ =

∫ t

−∞
p(τ)h(t− τ) dτ

X(ω) =

∫ +∞

−∞
x(t) exp(−iωt) dt =

∫ +∞

−∞

[∫ t

−∞
p(τ)h(t− τ) dτ

]
exp(−iωt) dt

where we changed the lower limit of integration, in the first equation, from 0 to−∞
because p(τ) = 0 for τ < 0.

Since h(t− τ) = 0 for τ > t, the upper limit of the second integral in the second
equation can be changed from t to+∞,

X(ω) = lim
s→∞

∫ +s

−s

∫ +s

−s
p(τ)h(t− τ) exp(−iωt) dt dτ
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Relationship of transfer functions

Introducing a new variable θ = t− τ we have

X(ω) = lim
s→∞

∫ +s

−s
p(τ) exp(−iωτ) dτ

∫ +s−τ

−s−τ
h(θ) exp(−iωθ) dθ

with lim
s→∞

s− τ = ∞, we finally have

X(ω) =

∫ +∞

−∞
p(τ) exp(−iωτ) dτ

∫ +∞

−∞
h(θ) exp(−iωθ) dθ

= P (ω)

∫ +∞

−∞
h(θ) exp(−iωθ) dθ = P (ω)H(ω)

where we have recognized that the first integral is the Fourier transform of p(t).
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Relationship of transfer functions

Our last relation was

X(ω) = P (ω)

∫ +∞

−∞
h(θ) exp(−iωθ) dθ

butX(ω) = H(ω)P (ω), so that, noting that in the above equation the last integral is
just the Fourier transform of h(θ), we may conclude that, effectively,H(ω) and h(t)

form a Fourier transform pair.
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