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Nature of Impulsive Loadings

An impulsive load is characterized

• by a single principal impulse, and

• by a rela vely short dura on.

p(t)

t

• Impulsive or shock loads are of great importance for the design of
certain classes of structural systems, e.g., vehicles or cranes.

• Damping has much less importance in controlling the maximum
response to impulsive loadings because the maximum response is
reached in a very short me, before the damping forces can dissipate a
significant por on of the energy input into the system.

• For this reason, in the following we’ll consider only the undamped
response to impulsive loads.
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Defini on of Peak Response

When dealing with the response to an impulsive loading of dura on 𝑡 of a
SDOF system, with natural period of vibra on 𝑇n we are mostly interested in
the peak response of the system.

The peak response is the maximum of the absolute value of the re-
sponse ra o, 𝑅max = max 𝑅(𝑡) .

• If 𝑡 ≪ 𝑇n necessarily 𝑅max happens a er the end of the loading, and its
value can be determined studying the free vibra ons of the dynamic
system.

• On the other hand, if the excita on lasts enough to have at least a local
extreme (maximum or minimum) during the excita on we have to
consider the more difficult problem of completely determining the
response during the applica on of the impulsive loading.
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Half-sine Wave Impulse

The sine-wave impulse has expression

𝑝(𝑡) =
𝑝 sin = 𝑝 sin𝜔𝑡 for 0 < 𝑡 < 𝑡 ,

0 otherwise.

p0

0.5 p0

0

t00.5 t0   0.0

p(
t)

time

where 𝜔 = is the frequency
associated with the load.

Note that 𝜔 𝑡 = 𝜋.
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Response to sine-wave impulse

Consider an undamped SDOF ini ally at rest, with natural period 𝑇n, excited
by a half-sine impulse of dura on 𝑡 .

The frequency ra o is 𝛽 = n/ and the response ra o in the interval
0 < 𝑡 < 𝑡 is

𝑅(𝑡) = 1
1 − 𝛽 (sin𝜔𝑡 − 𝛽 sin

𝜔𝑡
𝛽 ),

�̇�(𝑡) = 𝜔
1 − 𝛽 (cos𝜔𝑡 − cos

𝜔𝑡
𝛽 ). [NB: 𝜔𝛽 = 𝜔n]

It is (1 − 𝛽 )𝑅(𝑡 ) = −𝛽 sin / and (1 − 𝛽 )�̇�(𝑡 ) = −𝜔 (1 + cos / ),
consequently for 𝑡 ≤ 𝑡 the response ra o is

𝑅(𝑡) = −𝛽
1 − 𝛽 (1 + cos

𝜋
𝛽)sin𝜔n(𝑡 − 𝑡 ) + sin

𝜋
𝛽 cos𝜔n(𝑡 − 𝑡 )
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Maximum response to sine impulse

We have an extreme, and a possible peak value, for 0 ≤ 𝑡 ≤ 𝑡 if

�̇�(𝑡) = 𝜔
1 − 𝛽 (cos𝜔𝑡 − cos

𝜔𝑡
𝛽 ) = 0.

That implies that cos𝜔𝑡 = cos / = cos− / , whose roots are

𝜔𝑡 = ∓𝜔𝑡/𝛽 + 2𝑛𝜋, 𝑛 = 0,∓1,∓2,∓3,… .

It is convenient to subs tute 𝜔𝑡 = 𝜋𝛼, where 𝛼 = 𝑡/𝑡 :

𝜋𝑎 = 𝜋 ∓𝑎
𝛽 + 2𝑛 , 𝑛 = 0,∓1,∓2,… , 0 ≤ 𝑎 ≤ 1.

Eventually solving for 𝛼 one has

𝛼 = 2𝑛𝛽
𝛽 ± 1, 𝑛 = 0,∓1,∓2,… , 0 < 𝛼 < 1.

The next slide regards the characteris cs of these roots.
G. Boffi SDOF linear oscillator
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𝛼(𝛽, 𝑛)
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𝛼(𝛽, 𝑛)

In summary, to find the maximum of the response for an assigned 𝛽 < 1, one
has (𝑎) to compute all 𝛼 = un l a root is greater than 1, (𝑏) compute
all the responses for 𝑡 = 𝛼 𝑡 , (𝑐) choose the maximum of the maxima.
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- No roots of type min for ;

- no roots of type max for ;

- no roots for , i.e., no roots for
n ;

- only one root of type max for
, i.e., n n ;

- three roots, two maxima and one
minimum, for ;

- five roots, three maxima and two
minima, for ;
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Maximum response for 𝛽 > 1

For 𝛽 > 1, the maximum response takes place for 𝑡 > 𝑡 , and its absolute
value (see slide Response to sine-wave impulse) is

𝑅max =
𝛽

1 − 𝛽 (1 + cos
𝜋
𝛽) + sin

𝜋
𝛽 ,

using a simple trigonometric iden ty we can write

𝑅max =
𝛽

1 − 𝛽 2 + 2 cos 𝜋𝛽

but 1 + cos 2𝜙 = (cos 𝜙 + sin 𝜙) + (cos 𝜙 − sin 𝜙) = 2 cos 𝜙, so that

𝑅max =
2𝛽

1 − 𝛽 cos
𝜋
2𝛽 .
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Rectangular Impulse

Consider a rectangular impulse of dura on 𝑡 ,

𝑝(𝑡) = 𝑝
1 for 0 < 𝑡 < 𝑡 ,

0 otherwise. 0

po

0 to

The response ra o and its me deriva ve are

𝑅(𝑡) = 1 − cos𝜔n𝑡, �̇�(𝑡) = 𝜔n sin𝜔n𝑡,

and we recognize that we have maxima 𝑅max = 2 for 𝜔n𝑡 = 𝑛𝜋, with the
condi on 𝑡 ≤ 𝑡 . Hence we have no maximum during the loading phase for
𝑡 < 𝑇n/2, and at least one maximum, of value 2Δ , if 𝑡 ≥ 𝑇n/2.
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Rectangular Impulse (2)

For shorter impulses, the maximum response ra o is not a ained during
loading, so we have to compute the amplitude of the free vibra ons a er the
end of loading (remember, as 𝑡 ≤ 𝑇n/2 the velocity is posi ve at 𝑡 = 𝑡 !).

𝑅(𝑡) = (1 − cos𝜔n𝑡 ) cos𝜔n(𝑡 − 𝑡 ) + (sin𝜔n𝑡 ) sin𝜔n(𝑡 − 𝑡 ).

The amplitude of the response ra o is then

𝐴 = (1 − cos𝜔n𝑡 ) + sin 𝜔n𝑡 =

= 2(1 − cos𝜔n𝑡 ) = 2 sin 𝜔n𝑡
2 .
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Triangular Impulse

Let’s consider the response of a SDOF to a triangular impulse,

𝑝(𝑡) = 𝑝 (1 − 𝑡/𝑡 ) for 0 < 𝑡 < 𝑡 0

po

0 to

As usual, we must start finding the minimum dura on that gives place to a
maximum of the response in the loading phase, that is

𝑅(𝑡) = 1
𝜔n𝑡

sin𝜔n
𝑡
𝑡 − cos𝜔n

𝑡
𝑡 + 1 − 𝑡

𝑡 , 0 < 𝑡 < 𝑡 .

Taking the first deriva ve and se ng it to zero, one can see that the first
maximum occurs for 𝑡 = 𝑡 for 𝑡 = 0.37101𝑇n, and subs tu ng one can
see that 𝑅max = 1.

G. Boffi SDOF linear oscillator
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Triangular Impulse (2)

For load dura ons shorter than 0.37101𝑇n, the maximum occurs a er
loading and it’s necessary to compute the displacement and velocity at the
end of the load phase.

For longer loads, the maxima are in the load phase, so that one has to find
the all the roots of �̇�(𝑡), compute all the extreme values and finally sort out
the absolute value maximum.
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Shock or response spectra

We have seen that the response ra o is determined by the ra o of the impulse dura on to the natural
period of the oscillator. One can plot the maximum displacement ra o max as a func on of / n for
various forms of impulsive loads.
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Such plots are commonly known as displacement-response spectra, or simply as response spectra.
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Approximate Analysis

For long dura on loadings, the maximum response ra o depends on the rate
of the increase of the load to its maximum: for a step func on we have a
maximum response ra o of 2, for a slowly varying load we tend to a
quasi-sta c response, hence a factor ≊ 1

On the other hand, for short dura on loads, the maximum displacement is in
the free vibra on phase, and its amplitude depends on the work done on the
system by the load.
The response ra o depends further on the maximum value of the load
impulse, so we can say that the maximum displacement is a more significant
measure of response.
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Approximate Analysis (2)

An approximate procedure to evaluate the maximum displacement for a
short impulse loading is based on the impulse-momentum rela onship,

𝑚Δ�̇� = [𝑝(𝑡) − 𝑘𝑥(𝑡)] 𝑑𝑡.

When one notes that, for small 𝑡 , the displacement is of the order of 𝑡
while the velocity is in the order of 𝑡 , it is apparent that the 𝑘𝑥 term may be
dropped from the above expression, i.e.,

𝑚Δ�̇� ≊ 𝑝(𝑡) 𝑑𝑡.
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Approximate Analysis (3)

Using the previous approxima on, the velocity at me 𝑡 is

�̇�(𝑡 ) = 1
𝑚 𝑝(𝑡) 𝑑𝑡,

and considering again a negligibly small displacement at the end of the
loading, 𝑥(𝑡 ) ≊ 0, one has

𝑥(𝑡 − 𝑡 ) ≊ ∫ 𝑝(𝑡) 𝑑𝑡
𝑚𝜔n

sin𝜔n(𝑡 − 𝑡 ).

Please note that the above equa on is exact for an infinitesimal impulse
loading.

G. Boffi SDOF linear oscillator

Review



Impulsive Loads Review SbS Methods SbS Examples Linear Methods

Review of Numerical Methods

Response to Impulsive Loading

Review of Numerical Methods

Linear Methods in Time and Frequency Domain

Step-by-step Methods

Examples of SbS Methods
Constant Accelera on Method

Linear Accelera on Method

Newmark Beta Methods

Modified Newton-Raphson Method
G. Boffi SDOF linear oscillator

Impulsive Loads Review SbS Methods SbS Examples Linear Methods

Previous Methods

Both the Duhamel integral and the Fourier transform methods lie on on the
principle of superposi on, i.e., superposi on of the responses

• to a succession of infinitesimal impulses, using a convolu on (Duhamel)
integral, when opera ng in me domain

• to an infinity of infinitesimal harmonic components, using the frequency
response func on, when opera ng in frequency domain.

The principle of superposi on implies linearity, but this assump on is o en
invalid, e.g., a severe earthquake is expected to induce inelas c deforma on
in a code-designed structure.

G. Boffi SDOF linear oscillator
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State Vector, Linear and Non Linear Systems

The internal state of a linear dynamical system, considering that the mass,
the damping and the s ffness do not vary during the excita on, is described
in terms of its displacements and its velocity, i.e., the so called state vector

𝑥 = 𝑥(𝑡)
�̇�(𝑡) .

For a non linear system the state vector must include other informa on, e.g.
the current tangent s ffness, the cumulated plas c deforma ons, the
internal damage, ...

G. Boffi SDOF linear oscillator
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Step-by-step Methods

The so-called step-by-step methods restrict the assump on of linearity to
the dura on of a (usually short) me step .

Given an ini al system state, in step-by-step methods we divide the me in
steps of known, short dura on ℎ (usually ℎ = ℎ, a constant) and from the
ini al system state at the beginning of each step we compute the final
system state at the end of each step.

The final state vector in step 𝑖 will be the ini al state in the subsequent step,
𝑖 + 1.

G. Boffi SDOF linear oscillator
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Step-by-step Methods, 2

Opera ng independently the analysis for each me step there are no
requirements for superposi on and non linear behaviour can be considered
assuming that the structural proper es remain constant during each me
step.

In many cases, the non linear behaviour can be reasonably approximated by
a local linear model, valid for the dura on of the me step.

If the approxima on is not good enough, usually a be er approxima on can
be obtained reducing the me step.

G. Boffi SDOF linear oscillator
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Advantages of s-b-s methods

Generality step-by-step methods can deal with every kind of non-linearity,
e.g., varia on in mass or damping or varia on in geometry and
not only with mechanical non-lineari es.

Efficiency step-by-step methods are very efficient and are usually
preferred also for linear systems in place of Duhamel integral.

Extensibility step-by-step methods can be easily extended to systems with
many degrees of freedom, simply using matrices and vectors in
place of scalar quan es.

G. Boffi SDOF linear oscillator
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Disadvantages of s-b-s methods

The step-by-step methods are approximate numerical methods, that can give
only an approxima on of true response. The causes of error are

roundoff using too few digits in calcula ons.
trunca on using too few terms in series expressions of quan es,
instability the amplifica on of errors deriving from roundoff, trunca on

or modeling in one me step in all following me steps, usually
depending on the me step dura on.

Errors may be classified as

• phase shi s or change in frequency of the response,
• ar ficial damping, the numerical procedure removes or adds energy to

the dynamic system.
G. Boffi SDOF linear oscillator
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Piecewise exact method

• We use the exact solu on of the equa on of mo on for a system
excited by a linearly varying force, so the source of all errors lies in the
piecewise linearisa on of the force func on and in the approxima on
due to a local linear model.

• We will see that an appropriate me step can be decided in terms of the
number of points required to accurately describe either the force or the
response func on.

G. Boffi SDOF linear oscillator
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Piecewise exact method

For a generic me step of dura on ℎ, consider

• {𝑥 , �̇� } the ini al state vector,

• 𝑝 and 𝑝 , the values of 𝑝(𝑡) at the start and the end of the integra on
step,

• the linearised force

𝑝(𝜏) = 𝑝 + 𝛼𝜏, 0 ≤ 𝜏 ≤ ℎ, 𝛼 = (𝑝(ℎ) − 𝑝(0))/ℎ,

• the forced response

𝑥 = 𝑒 (𝐴 sin(𝜔D𝜏) + 𝐵 cos(𝜔D𝜏)) + (𝛼𝑘𝜏 + 𝑘𝑝 − 𝛼𝑐)/𝑘 ,

where 𝑘 and 𝑐 are the s ffness and damping of the SDOF system.

G. Boffi SDOF linear oscillator
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Piecewise exact method

Evalua ng the response 𝑥 and the velocity �̇� for 𝜏 = 0 and equa ng to
{𝑥 , �̇� }, wri ng Δ = 𝑝(0)/𝑘 and 𝛿(Δ ) = (𝑝(ℎ) − 𝑝(0))/𝑘, one can find
𝐴 and 𝐵

𝐴 = �̇� + 𝜁𝜔𝐵 − 𝛿(Δ )
ℎ

1
𝜔D

𝐵 = 𝑥 + 2𝜁
𝜔
𝛿(Δ )
ℎ − Δ

subs tu ng and evalua ng for 𝜏 = ℎ one finds the state vector at the end of
the step.

G. Boffi SDOF linear oscillator
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Piecewise exact method

With
𝑆 , = sin(𝜔Dℎ) exp(−𝜁𝜔ℎ) and 𝐶 , = cos(𝜔Dℎ) exp(−𝜁𝜔ℎ)

and the previous defini ons of Δ and 𝛿(Δ ), finally we can write

𝑥(ℎ) = 𝐴 𝑆 , + 𝐵𝐶 , + (Δ + 𝛿(Δ )) − 2𝜁
𝜔
𝛿(Δ )
ℎ

�̇�(ℎ) = 𝐴(𝜔D𝐶 , − 𝜁𝜔𝑆 , ) − 𝐵(𝜁𝜔𝐶 , + 𝜔D𝑆 , ) +
𝛿(Δ )
ℎ

where

𝐵 = 𝑥 + 2𝜁
𝜔
𝛿(Δ )
ℎ − Δ , 𝐴 = �̇� + 𝜁𝜔𝐵 − 𝛿(Δ )

ℎ
1
𝜔D

.
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Example

We have a damped system that is excited by a load in resonance with the
system, we know the exact response

( ) st (
sin cos ) exp( ) cos

and we want to compute a step-by-step approxima on using different step
lengths.

m=1000kg,

k=4 1000N/m,

=2 ,

=0.05,

( )
N sin( )

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0  0.5  1  1.5  2

D
is

pl
ac

em
en

t [
m

]
Time [s]

Exact
h=T/4
h=T/8

h=T/16

It is apparent that you have a very good approxima on when the linearised
loading is a very good approxima on of the input func on, let’s say
ℎ ≤ 𝑇/10.
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Central differences

To derive the Central Differences Method, we write the eq. of mo on at me
𝜏 = 0 and find the ini al accelera on,

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝑝 ⇒ �̈� = 1
𝑚(𝑝 − 𝑐�̇� − 𝑘𝑥 )

On the other hand, the ini al accelera on can be expressed in terms of finite
differences,

�̈� = 𝑥 − 2𝑥 + 𝑥
ℎ = 1

𝑚(𝑝 − 𝑐�̇� − 𝑘𝑥 )

solving for 𝑥

𝑥 = 2𝑥 − 𝑥 + ℎ
𝑚 (𝑝 − 𝑐�̇� − 𝑘𝑥 )

G. Boffi SDOF linear oscillator
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Central differences

We have an expression for 𝑥 , the displacement at the end of the step,

𝑥 = 2𝑥 − 𝑥 + ℎ
𝑚 (𝑝 − 𝑐�̇� − 𝑘𝑥 ),

but we have an addi onal unknown, 𝑥 ... if we write the finite differences
approxima on to �̇� we can find an approxima on to 𝑥 in terms of the ini al
velocity �̇� and the unknown 𝑥

�̇� = 𝑥 − 𝑥
2ℎ ⇒ 𝑥 = 𝑥 − 2ℎ�̇�

Subs tu ng in the previous equa on

𝑥 = 2𝑥 − 𝑥 + 2ℎ�̇� + ℎ
𝑚 (𝑝 − 𝑐�̇� − 𝑘𝑥 ),

and solving for 𝑥

𝑥 = 𝑥 + ℎ�̇� + ℎ
2𝑚(𝑝 − 𝑐�̇� − 𝑘𝑥 )
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Central differences

𝑥 = 𝑥 + ℎ�̇� + ℎ
2𝑚(𝑝 − 𝑐�̇� − 𝑘𝑥 )

To start a new step, we need the value of �̇� , but we may approximate the
mean velocity, again, by finite differences

�̇� + �̇�
2 = 𝑥 − 𝑥

ℎ ⇒ �̇� = 2(𝑥 − 𝑥 )
ℎ − �̇�

The method is very simple, but it is condi onally stable. The stability
condi on is defined with respect to the natural frequency, or the natural
period, of the SDOF oscillator,

𝜔nℎ ≤ 2 ⇒ ℎ ≤ 𝑇
𝜋 ≈ 0.32𝑇

For a SDOF this is not relevant because, as we have seen in our previous example,
we need more points for response cycle to correctly represent the response.
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Methods based on Integra on

We will make use of an hypothesis on the varia on of the accelera on during
the me step and of analy cal integra on of accelera on and velocity to
step forward from the ini al to the final condi on for each me step.

In general, these methods are based on the two equa ons

�̇� = �̇� + �̈�(𝜏) 𝑑𝜏,

𝑥 = 𝑥 + �̇�(𝜏) 𝑑𝜏,

which express the final velocity and the final displacement in terms of the
ini al values 𝑥 and �̇� and some definite integrals that depend on the
assumed varia on of the accelera on during the me step.
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Integra on Methods

Depending on the different assump on we can make on the varia on of
velocity, different integra on methods can be derived.

We will see

• the constant accelera on method,

• the linear accelera on method,

• the family of methods known as Newmark Beta Methods, that
comprises the previous methods as par cular cases.

G. Boffi SDOF linear oscillator
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Constant Accelera on

Here we assume that the accelera on is constant during each me step,
equal to the mean value of the ini al and final values:

�̈�(𝜏) = �̈� + Δ�̈�/2,

where Δ�̈� = �̈� − �̈� , hence

�̇� = �̇� + (�̈� + Δ�̈�/2) 𝑑𝜏

⇒ Δ�̇� = �̈� ℎ + Δ�̈�ℎ/2

𝑥 = 𝑥 + (�̇� + (�̈� + Δ�̈�/2)𝜏)𝑑𝜏

⇒ Δ𝑥 = �̇� ℎ + (�̈� )ℎ /2 + Δ�̈�ℎ /4

G. Boffi SDOF linear oscillator

Impulsive Loads Review SbS Methods SbS Examples Piecewise Exact Central Differences Integra on Non Linearity

Constant accelera on

Taking into account the two equa ons on the right of the previous slide, and
solving for Δ�̇� and Δ�̈� in terms of Δ𝑥, we have

Δ�̇� = 2Δ𝑥 − 2ℎ�̇�
ℎ , Δ�̈� = 4Δ𝑥 − 4ℎ�̇� − 2�̈� ℎ

ℎ .

We have two equa ons and three unknowns... Assuming that the system
characteris cs are constant during a single step, we can write the equa on of
mo on at mes 𝜏 = ℎ and 𝜏 = 0, subtract member by member and write
the incremental equa on of mo on

𝑚Δ�̈� + 𝑐Δ�̇� + 𝑘Δ𝑥 = Δ𝑝,

that is a third equa on that relates our unknowns.
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Constant accelera on

Subs tu ng the above expressions for Δ�̇� and Δ�̈� in the incremental eq. of
mo on and solving for Δ𝑥 gives, finally,

Δ𝑥 = �̃�
�̃� , Δ�̇� = 2Δ𝑥 − 2ℎ�̇�

ℎ

where

�̃� = 𝑘 + 2𝑐
ℎ + 4𝑚

ℎ
�̃� = Δ𝑝 + 2𝑐�̇� + 𝑚(2�̈� + 4

ℎ �̇� )

While it is possible to compute the final accelera on in terms of Δ𝑥, to
achieve a be er accuracy it is usually computed solving the equa on of
equilibrium wri en at the end of the me step.
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Constant Accelera on

Two further remarks

1. The method is uncondi onally stable

2. The effec ve s ffness, disregarding damping, is �̃� ≈ 𝑘 + 4𝑚/ℎ .

Dividing both members of the above equa on by it is

̃
n ( / n)

n ,

The number T of me steps in a period n is related to the me step dura on, T n/ ,
solving for and subs tu ng in our last equa on, we have

̃
≈ T

For, e.g., T it is ̃ / ≈ , the mass contribu on to the effec ve s ffness is four
mes the elas c s ffness and the 80% of the total.
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Linear Accelera on

We assume that the accelera on is linear, i.e.

�̈�(𝑡) = �̈� + Δ�̈� 𝜏ℎ
hence

Δ�̇� = �̈� ℎ + Δ�̈�ℎ/2, Δ𝑥 = �̇� ℎ + �̈� ℎ /2 + Δ�̈�ℎ /6

Following a deriva on similar to what we have seen in the case of constant
accelera on, we can write, again,

Δ𝑥 = 𝑘 + 3𝑐ℎ + 6𝑚ℎ Δ𝑝 + 𝑐(�̈� ℎ
2 + 3�̇� ) + 𝑚(3�̈� + 6�̇�ℎ )

Δ�̇� = Δ𝑥3ℎ − 3�̇� − �̈� ℎ
2
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Linear Accelera on

The linear accelera on method is condi onally stable, the stability condi on
being

ℎ
𝑇 ≤ √3

𝜋 ≈ 0.55

When dealing with SDOF systems, this condi on is never of concern, as we
need a shorter step to accurately describe the response of the oscillator, let’s
say ℎ ≤ 0.12𝑇...
When stability is not a concern, the accuracy of the linear accelera on
method is far superior to the accuracy of the constant accelera on method,
so that this is the method of choice for the analysis of SDOF systems.
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Newmark Beta Methods

The constant and linear accelera on methods are just two members of the
family of Newmark Beta methods, where we write

Δ�̇� = (1 − 𝛾)ℎ�̈� + 𝛾ℎ�̈�

Δ𝑥 = ℎ�̇� + (12 − 𝛽)ℎ �̈� + 𝛽ℎ �̈�

The factor 𝛾 weights the influence of the ini al and final accelera ons on the
velocity increment, while 𝛽 has a similar role with respect to the
displacement increment.
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Newmark Beta Methods

Using 𝛾 ≠ 1/2 leads to numerical damping, so when analysing SDOF
systems, one uses 𝛾 = 1/2 (numerical damping may be desirable when
dealing with MDOF systems).

Using 𝛽 = leads to the constant accelera on method, while 𝛽 = leads
to the linear accelera on method. In the context of MDOF analysis, it’s
worth knowing what is the minimum 𝛽 that leads to an uncondi onally
stable behaviour.
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Newmark Beta Methods

The general format for the solu on of the incremental equa on of mo on
using the Newmark Beta Method can be wri en as follows:

Δ𝑥 = Δ�̃�
�̃�

Δ𝑣 = 𝛾
𝛽
Δ𝑥
ℎ − 𝛾

𝛽𝑣 + ℎ 1 − 𝛾
2𝛽 𝑎

with

�̃� = 𝑘 + 𝛾
𝛽
𝑐
ℎ + 1

𝛽
𝑚
ℎ

Δ�̃� = Δ𝑝 + ℎ 𝛾
2𝛽 − 1 𝑐 + 1

2𝛽𝑚 𝑎 + 𝛾
𝛽𝑐 +

1
𝛽
𝑚
ℎ 𝑣
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Non Linear Systems

A convenient procedure for integra ng the response of a non linear system is
based on the incremental formula on of the equa on of mo on, where for
the s ffness and the damping were taken values representa ve of their
varia on during the me step: in line of principle, the mean values of
s ffness and damping during the me step, or, as this is usually not possible,
their ini al values, 𝑘 and 𝑐 .

The Newton-Raphson method can be used to reduce the unbalanced forces
at the end of the step.
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Modified Newton-Raphson Method

Usually we use the modified Newton-Raphson method, characterised by not
upda ng the system s ffness at each itera on. In pseudo-code, referring for
example to the Newmark Beta Method

x1,v1,f1 = x0,v0,f0 % initialisation; gb=gamma/beta
Dr = DpTilde
loop:

Dx = Dr/kTilde
x2 = x1 + Dx
v2 = gb*Dx/h - gb*v1 + (1-gb/2)*h*a0
x_pl = update_u_pl(...)
f2 = k*(x2-x_pl)
% important
Df = (f2-f1) + (kTilde-k_ini)*Dx
Dr = Dr - Df
x1, v1, f1 = x2, v2, f2
if ( tol(...) < req_tol ) BREAK loop
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Exercise

A system has a mass𝑚 = 1000kg, a s ffness 𝑘 = 40000N/m and a viscous
damping whose ra o to the cri cal damping is 𝜁 = 0.03.
The spring is elastoplas c, with a yielding force of 2500N.

The load is an half-sine impulse, with dura on 0.3s and maximum value of
6000N.

Use the constant accelera on method to integrate the response, with
ℎ = 0.05s and, successively, ℎ = 0.02s . Note that the s ffness is either 0 or
𝑘, write down the expression for the effec ve s ffness and loading in the
incremental formula on, write a spreadsheet or a program to make the
computa ons.
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