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An Example The Equation of Motion Matrices are Linear Operators Pre

Consider an undamped system with two masses and two degrees of freedom.
pa(t) pa(t)

k1 ko ks

X1 X9
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Introductory Remarks

We can separate the two masses, single out the spring forces and, using the D'Alembert
Principle, the inertial forces and, finally. write an equation of dynamic equilibrium for
each mass.

made — ka1 + (k2 + k3)za = pa(t)
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An Example The Equation of Motion Matrices are Linear Operators Pre

The equation of m

With some little rearrangement we have a system of two linear differential equations in
two variables, x;(t) and za(t):

miy + (k1 + ko)z1 — kozo = pi(2),
mado — ka1 + (k2 + k3)x2 = pa(t).
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The equation of motion of a 2DOF system

Introducing the loading vector p, the vector of inertial forces f; and the vector of
elastic forces fg,

p= p1(é) o fr=

fr1 _ Jfsa
Po(t) fs=

fra|’ fs2

we can write a vectorial equation of equilibrium:

fr+ fs =p(1).
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An Example The Equation of Motion Matrices are Linear Operators Pre

It is possible to write the linear relationship between fg and the vector of displacements

T
T = {a:le} in terms of a matrix product, introducing the so called stiffness matrix
K.
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fs =Kz
’

It is possible to write the linear relationship between fg and the vector of displacements
T
T = {a:le} in terms of a matrix product, introducing the so called stiffness matrix

K.

In our example it is

fo— ki+ky =k v K

—ka kot ks
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fs=Kz

It is possible to write the linear relationship between fg and the vector of displacements

T
4B = {.1‘11'2} in terms of a matrix product, introducing the so called stiffness matrix
K.

In our example it is

ki+k —k
fo — 1+ ko 2 | o Ko
—ky kot ks

The stiffness matrix K has a number of rows equal to the number of elastic forces, i.e.,
one force for each DOF and a number of columns equal to the number of the DOF.

The stiffness matrix K is hence a square matrix K
ndof x ndof
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An Example The Equation of Motion Matrices are Linear Operators Pre

Ji=Mz2

Analogously, introducing the mass matrix M that, for our example, is

m 0
M=|"
0 mo
we can write
fr=Ma&.

Also the mass matrix M is a square matrix, with number of rows and columns equal to
the number of DOF's.
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Finally it is possible to write the equation of motion in matrix format:

Mz + Kx =p(t).



An Example The Equation of Motion Matrices are Linear Operators Pre
Matrix Equation

Finally it is possible to write the equation of motion in matrix format:

Mi+ Kx=p(t).

Of course it is possible to take into consideration also the damping forces, taking into
account the velocity vector & and introducing a damping matrix C' too, so that we
can eventually write

Mi+Ca+ Kax=p(t).
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Matrix Equation

Finally it is possible to write the equation of motion in matrix format:
Mi+ Kx=p(t).

Of course it is possible to take into consideration also the damping forces, taking into
account the velocity vector & and introducing a damping matrix C' too, so that we

can eventually write
Mz+Czx+ Kax=p(t).

But today we are focused on undamped systems...
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Properties of K

e K is symmetrical.
The elastic force exerted on mass ¢ due to an unit displacement of mass j,
fsi = kij is equal to the force k;; exerted on mass j due to an unit diplacement of
mass i, in virtue of Betti's theorem (also known as Maxwell-Betti reciprocal work
theorem).
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Properties of K

e K is symmetrical.
The elastic force exerted on mass ¢ due to an unit displacement of mass j,
fsi = kij is equal to the force k;; exerted on mass j due to an unit diplacement of
mass 4, in virtue of Betti's theorem (also known as Maxwell-Betti reciprocal work
theorem).

e K is a positive definite matrix.
The strain energy V for a discrete system is

1
V=’
5% Is;
and expressing fs in terms of K and x we have
1
V= ga:TK x,

and because the strain energy is positive for & # 0 it follows that K is definite

positive.
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Properties of M

Restricting our discussion to systems whose degrees of freedom are the displacements of
a set of discrete masses, we have that the mass matrix is a diagonal matrix, with all its
diagonal elements greater than zero. Such a matrix is symmetrical and definite positive.

Both the mass and the stiffness matrix are symmetrical and definite positive.
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Properties of M

Restricting our discussion to systems whose degrees of freedom are the displacements of
a set of discrete masses, we have that the mass matrix is a diagonal matrix, with all its
diagonal elements greater than zero. Such a matrix is symmetrical and definite positive.

Both the mass and the stiffness matrix are symmetrical and definite positive.

Note that the kinetic energy for a discrete system can be written

T = §¢TM T.
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An Example The Equation of Motion Matrices are Linear Operators Pre

The findings in the previous two slides can be generalised to the structural matrices of
generic structural systems, with two main exceptions.
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Generalisation of previous results

The findings in the previous two slides can be generalised to the structural matrices of
generic structural systems, with two main exceptions.

1. For a general structural system, in which not all DOFs are related to a mass, M
could be semi-definite positive, that is for some particular displacement vector the
kinetic energy is zero.
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Generalisation of previous results

The findings in the previous two slides can be generalised to the structural matrices of

generic structural systems, with two main exceptions.

1. For a general structural system, in which not all DOFs are related to a mass, M
could be semi-definite positive, that is for some particular displacement vector the
kinetic energy is zero.

2. For a general structural system subjected to axial loads, due to the presence of
geometrical stiffness it is possible that for some particular displacement vector the

strain energy is zero and K is semi-definite positive.
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Graphical statement of the problem

L1 T2

k1 =2k, ko =k; my =2m, mg = 1m;
p(t) = po sinwt.
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Graphical statement of the problem

P(t) —

k1 ko

L - L -
T T2

k1 =2k, ko =k; my =2m, mg = 1m;
p(t) = po sinwt.
The equations of motion
m1Z1 + k121 + k2 (21 — 22) = po sin wt,

Mol + ko (1172 = .’L’1) =0.
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An Example The Equation of Motion Matrices are Linear Operators Pre
The pro

Graphical statement of the problem

P(t) —

L - L -
T T2

k1 =2k, ko =k; my =2m, mg = 1m;
p(t) = po sinwt.

The equations of motion
maiy + k1w + ko (x1 — x2) = po sinwt,
Mol + ko (1172 = .’L’1) =0.

. but we prefer the matrix notation ...
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An Example The Equation of Motion Matrices are Linear Operators Pre

The steady state solutio

We prefer the matrix notation because we can find the steady-state response of a
SDOF system exactly as we found the s-s solution for a SDOF system.

Substituting & (t) = £ sinwt in the equation of motion and simplifying sin wt,

3 -1 2 0 1
P el teon)
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The steady state solution

We prefer the matrix notation because we can find the steady-state response of a
SDOF system exactly as we found the s-s solution for a SDOF system.

Substituting & (t) = £ sinwt in the equation of motion and simplifying sin wt,

3 -1 22 00, |1
e Yem)

dividing by k, with w2 = k/m, % = w?/w3 and Ag = po/k the above equation can be
written
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The steady state solution

We prefer the matrix notation because we can find the steady-state response of a
SDOF system exactly as we found the s-s solution for a SDOF system.

Substituting & (t) = £ sinwt in the equation of motion and simplifying sin wt,

L el el

dividing by k, with w2 = k/m, % = w?/w3 and Ag = po/k the above equation can be

R Db el
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An Example The Equation of Motion Matrices are Linear Operators Pre
The steady stat

The determinant of the matrix of coefficients is

Det = 28* — 58% + 2
but we want to write the polynomial in 8 in terms of its roots

Det = 2 x (8% —1/2) x (6% - 2).

Solving for £/Ag in terms of the inverse of the coefficient matrix gives
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The steady state solutio

An Example The Equation of Motion Matrices are Linear Operators Pre

The determinant of the matrix of coefficients is
Det = 28* — 562 + 2
but we want to write the polynomial in 8 in terms of its roots

Det = 2 x (8% —1/2) x (6% - 2).

Solving for £/Ag in terms of the inverse of the coefficient matrix gives

5 1 1-p2 1 1
A 2(82-1(82-2)| 1 3-28%|]0

- 1 il —
282 - 3)(82-2) T




Normalized displacement

steady-state response for a 2 dof system, harmonic load

T
'
ot
I
N
1l




An Example The Equation of Motion Matrices are Linear Operators Pre

Comment to the S

The steady state solution is

- 1 1-82| .
ws-S—Ast2(B2_%)(62_2){ 1 }smwt.

As it's apparent in the previous slide, we have two different values of the excitation frequency

for which the dynamic amplification factor goes to infinity.



Introduction The Homogeneous Problem Modal Analysis Examples

Comment to the Steady State Solution

An Example The Equation of Motion Matrices are Linear Operators Prc

The steady state solution is

1 1—p2

Ls.s = As sin wt.
"2(82 - 1)(82 - 2) 1

As it's apparent in the previous slide, we have two different values of the excitation frequency
for which the dynamic amplification factor goes to infinity.

For an undamped SDOF system, we had a single frequency of excitation that excites a

resonant response, now for a two degrees of freedom system we have two different excitation
frequencies that excite a resonant response.
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Comment to the Steady State Solution

An Example The Equation of Motion Matrices are Linear Operators Prc

The steady state solution is

1 1—p2

Ls.s = As sin wt.
"2(82 - 1)(82 - 2) 1

As it's apparent in the previous slide, we have two different values of the excitation frequency
for which the dynamic amplification factor goes to infinity.

For an undamped SDOF system, we had a single frequency of excitation that excites a
resonant response, now for a two degrees of freedom system we have two different excitation

frequencies that excite a resonant response.

We know how to compute a particular integral for a MDOF system (at least for a
harmonic loading), what do we miss to be able to determine the integral of motion?
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The Homogeneous Equation of Motion Eigenvalues and Eigenvectors Eig

Homogeneous equ

To understand the behaviour of a MDOF system, we have to study the homogeneous
solution.

Let's start writing the homogeneous equation of motion,

Mx+ Kax=0.
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Homogeneous equation of motion

To understand the behaviour of a MDOF system, we have to study the homogeneous
solution.

Let's start writing the homogeneous equation of motion,

Mx+ Kax=0.

The solution, in analogy with the SDOF case, can be written in terms of a harmonic
function of unknown frequency and, using the concept of separation of variables, of a
constant vector, the so called shape vector 1):

x(t) = Y(Asinwt + B coswt).
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Homogeneous equation of motion

To understand the behaviour of a MDOF system, we have to study the homogeneous
solution.

Let's start writing the homogeneous equation of motion,
Mzx+ Kax=0.
The solution, in analogy with the SDOF case, can be written in terms of a harmonic

function of unknown frequency and, using the concept of separation of variables, of a
constant vector, the so called shape vector 1):

x(t) = Y(Asinwt + B coswt).

Substituting in the equation of motion, we have
(K —w”’M) y(Asinwt + Bcoswt) = 0
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The Homogeneous Equation of Motion Eigenvalues and Eigenvectors Eig

The previous equation must hold for every value of ¢, so it can be simplified removing the time
dependency:
(K —w’M)y=0.

This is a homogeneous linear equation, with unknowns 1; and the coefficients that depends on the
parameter w?.
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Eigenvalues

The previous equation must hold for every value of ¢, so it can be simplified removing the time
dependency:
(K —w’M)y=0.

This is a homogeneous linear equation, with unknowns 1; and the coefficients that depends on the

parameter w?.

Speaking of homogeneous systems, we know that

e there is always a trivial solution, v¥» = 0, and

e non-trivial solutions are possible if the determinant of the matrix of coefficients is equal to zero,

det (K —w’M) =0
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Eigenvalues

The previous equation must hold for every value of ¢, so it can be simplified removing the time
dependency:
(K —w’M)y=0.

This is a homogeneous linear equation, with unknowns 1; and the coefficients that depends on the

parameter w?.

Speaking of homogeneous systems, we know that

e there is always a trivial solution, v¥» = 0, and

e non-trivial solutions are possible if the determinant of the matrix of coefficients is equal to zero,
det (K —w’M) =0

The eigenvalues of the MDOF system are the values of w? for which the above equation (the equation

of frequencies) is verified or, in other words, the frequencies of vibration associated with the shapes for
which

K sinwt = w2M¢ sin wt.
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Eigenvalues, cont.

For a system with IV degrees of freedom the expansion of det (K — wQM) is an

algebraic polynomial of degree N in w?.

A polynomial of degree N has exactly IV roots, either real or complex conjugate.
In Dynamics of Structures those roots w?, i = 1,..., N are all real because the
structural matrices are symmetric matrices.

Moreover, if both K and M are positive definite matrices (a condition that is always
satisfied by stable structural systems) all the roots, all the eigenvalues, are strictly

positive:

w>0, fori=1,...,N.
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The Homogeneous Equation of Motion Eigenvalues and Eigenvectors Eig

Eigenvectors

Substituting one of the N roots w? in the characteristic equation,
(K —w!M)v; =0

the resulting system of N — 1 linearly independent equations can be solved (except for

2

a scale factor) for 1;, the eigenvector corresponding to the eigenvalue w;.



The Homogeneous Equation of Motion Eigenvalues and Eigenvectors Eig

Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the value of one of the
components and compute the values of all the other N — 1 components using the
N — 1 linearly indipendent equations.
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Eigenvectors

The Homogeneous Equation of Motion Eigenvalues and Eigenvectors Eig

The scale factor being arbitrary, you have to choose (arbitrarily) the value of one of the
components and compute the values of all the other N — 1 components using the
N — 1 linearly indipendent equations.

It is common to impose to each eigenvector a normalisation with respect to the mass
matrix, so that

Y] M =m

where m represents the unit mass.
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Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the value of one of the
components and compute the values of all the other N — 1 components using the
N — 1 linearly indipendent equations.

It is common to impose to each eigenvector a normalisation with respect to the mass
matrix, so that

Y] M =m

where m represents the unit mass.

Please consider that, substituting different eigenvalues in the equation of free vibra-
tions, you have different linear systems, leading to different eigenvectors.
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The Homogeneous Equation of Motion Eigenvalues and Eigenvectors Eig

Initial Conditions

The most general expression (the general integral) for the displacement of a
homogeneous system is

N

x(t) = Z ;(A; sinw;t + B; cosw;t).
i=1

In the general integral there are 2N unknown constants of integration, that must be
determined in terms of the initial conditions.
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Initial Conditions

Usually the initial conditions are expressed in terms of initial displacements and initial velocities
x and T, so we start deriving the expression of displacement with respect to time to obtain

N
m(t) = Z @biwi(Ai COS wit — Bl sin wit)

i=1

and evaluating the displacement and velocity for ¢t = 0 it is

N N
z(0) = Z’/’iBi = Zo, x(0) = Zﬁ%%’&' = @.
i=1 i=1
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Initial Conditions

Usually the initial conditions are expressed in terms of initial displacements and initial velocities
xo and &y, so we start deriving the expression of displacement with respect to time to obtain

N
z(t) = Z hiw; (A; cosw;t — B; sinw;t)

i=1

and evaluating the displacement and velocity for t = 0 it is

N N
:B(O) = Z"piBi = Lo, 33(0) = Z"/’iwiAi = x.
i=1 i=1

The above equations are vector equations, each one corresponding to a system of N equations,
so we can compute the 2N constants of integration solving the 2N equations

N N
Z¢ji3i:1’0,ja ijiwiAi:i'O,ja j=1...,N.
i=1 i=1
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The Homogeneous Equation of Motion Eigenvalues and Eigenvectors

Take into consideration two distinct eigenvalues, w? and w?, and write the
characteristic equation for each eigenvalue:

K, = w>Map,
K 1 = w; M,
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The Homogeneous Equation of Motion Eigenvalues and Eigenvectors Eig

Orthogonality - 1

Take into consideration two distinct eigenvalues, w? and w?, and write the
characteristic equation for each eigenvalue:

K, = w>Map,
K 1 = w; M,

premultiply each equation member by the transpose of the other eigenvector

YK, = wlpl M,
YLK, = wiepr M 1,
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The Homogeneous Equation of Motion Eigenvalues and Eigenvectors Eig
Orthogona
’

The term 9! K 1), is a scalar, hence

T
Yr K, = (YLK ,) =] K" 9,
but K is symmetrical, K7 = K and we have

YT K, = T K .

By a similar derivation
P M = ¢, M .

N iuiti DoF Systems



The Homogeneous Equation of Motion Eigenvalues and Eigenvectors Eig
Orthogona
’

Substituting our last identities in the previous equations, we have

¢1TK"/’S :wE"l’zM"bs
YK i, = wip] M 1,

subtracting member by member we find that

(wF —wd) ¥ Map =0
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Orthogonality - 3

The Homogeneous Equation of Motion Eigenvalues and Eigenvectors Eig

Substituting our last identities in the previous equations, we have

Y K, = wlp) M ap,
1/)ng3 :Wg’lngips

subtracting member by member we find that

(wf —w?) Py Map, =0

We started with the hypothesis that w? # w?, so for every r # s we have that the
corresponding eigenvectors are orthogonal with respect to the mass matrix

WIMap, =0, for r # s.
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The eigenvectors are orthogonal also with respect to the stiffness matrix:

WIK 4, = w2 Map, =0, forr #s.



The Homogeneous Equation of Motion Eigenvalues and Eigenvectors Eig
Orthog

The eigenvectors are orthogonal also with respect to the stiffness matrix:

WIK 4, = w2 Map, =0, forr #s.

By definition
M; = ¢ M p;

and consequently
¥l K i = Wl M;.
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The Homogeneous Equation of Motion Eigenvalues and Eigenvectors Eig

Orthogonality - 4

The eigenvectors are orthogonal also with respect to the stiffness matrix:
'l»[’ZK'Qbr = wfg"vaer =0, forr#s.
By definition
M; = ] M o;

and consequently
¥l K i = Wl M;.

M; is the modal mass associated with mode no. ¢ while K; = wizMi is the respective

modal stiffness.



Modal Analysis
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Eigenvectors are a base

The eigenvectors are linearly independent, so for every vector & we can write
N
j=1

The coefficients are readily given by premultiplication of x by 1! M, because

N
Y Ma=> ] Mg =] M tig; = Mig;

Jj=1

in virtue of the ortogonality of the eigenvectors with respect to the mass matrix, and the above
relationship gives

95 = — 7 -
J Mj
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Eigenvectors are a base

Generalising our results for the displacement vector to the acceleration vector and
expliciting the time dependency, it is

N N
x(t) =) iq;(t), B(t) =) ;;(t),
=1 =1
N N
zi(t) =D Wijg;(t), Bi() = bidis ().
j=1 Jj=1

Introducing q(t), the vector of modal coordinates and W, the eigenvector matrix, whose

columns are the eigenvectors, we can write

2(t) = W qt), B(t) = W ().
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EoM in Modal Coordinates...

Substituting the last two equations in the equation of motion,
MYG+K¥q=npt)
premultiplying by ¥
VMO G+9TKWq=9"p1)
introducing the so called starred matrices, with p*(t) = ¥T'p(t), we can finally write
M* G+ K*q=p'(t).
The vector equation above corresponds to the set of scalar equations

pi=> mi+ > kg, i=1,...,N.
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Eigenvectors are a base EoM in Modal Coordinates Initial Conditions

We must examine the structure of the starred symbols.
The generic element, with indexes i and j, of the starred matrices can be expressed in terms of

single eigenvectors,

m;; = p] M 1, = 0y M,
k;j = ’djoK ij = wféijMi.

where 0;; is the Kroneker symbol,
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are N independent equations!

We must examine the structure of the starred symbols.
The generic element, with indexes ¢ and j, of the starred matrices can be expressed in terms of

single eigenvectors,

m;j = ¢¢TM¢j = 0 M,
K = wTK 4 — W25 M.
where §;; is the Kroneker symbol,
ol

Substituting in the equation of motion, with p¥ = 1 p(t) we have

a set of uncoupled equations
Mifji+wi2Miqi:pf(t), iil,...,N
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Initial Conditions Revisited

The initial displacements can be written in modal coordinates,
xo =¥ qo
and premultiplying both members by W7 M we have the following relationship:
UM zy=9"M ¥ q) = M*qq.

Premultiplying by the inverse of M™* and taking into account that M* is diagonal,

I'nr
Go= (M) ST Mz, = qo= L%
M;
and, analogously,
. P My
qi0 = Mi
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2 DOF System

kl k2 p(t)

e - e -
Al T2

kl = 2k, kg = 3k, mi = 2m, mo = 4m;
p(t) = po sinwt.
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The equation of frequencies is
| - 0

5k — 2w?m -3k

K- 2MH:
H w 3k 3k —4uwm




2 DOF System
Equa

The equation of frequencies is
| - 0

(8m?) w* — (26mk) w? 4+ (6k?)w® =0

5k — 2w?m -3k

K- 2MH:
H w 3k 3k —4uwm

Developing the determinant
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2 DOF System
Equation of freq

The equation of frequencies is

5k — 2w?m —3k
H v —3k 3k —dw’m |
Developing the determinant
(8m?) wt — (26mk) w? + (6k?) W’ =0
Solving the algebraic equation in w?
o k13— \/12 , k13+ \/12
Wy = Wy = —
m 8 m 8
1k k
w% = ZE, wg = 3 E
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2 DOF System
Eigenve

Substituting w? for w? in the first of the characteristic equations gives the ratio
between the components of the first eigenvector,

1
k(—2- ZWM — 3kt =0
while substituting w3 gives

k(3 —=2-3)12 — 3kipaa = 0.
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2 DOF System

Eigenvectors

Substituting w? for w? in the first of the characteristic equations gives the ratio
between the components of the first eigenvector,

1
k(—2- Z)¢11 — 3k =0
while substituting w3 gives
k(3 —2-3)¢12 — 3kipe = 0.

Solving with the arbitrary assignment 111 = 122 = 1 gives the unnormalized

)+l )3
ool =)

eigenvectors,



2 DOF System

Normalization

We compute first M; and Mo,

=m{2, 6} {%} =1lm

and, in a similar way, we have My = 22m; the adimensional normalisation factors are

a1 = V11 = 3.317, s = v/22 = 4.690.

Applying the normalisation factors to the respective unnormalised eigenvectors and collecting them in a
matrix, we have the matrix of normalized eigenvectors

+0.45227  +0.21320

+0.30151 —0.63960]



The modal loading is

p(t) =T p(1)

1 3 0

= Po [_3 {2] {l}sinwt
3

= Do { {2} sinwt
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Modal EoM

Substituting its modal expansion for x into the equation of motion and premultiplying
by T we have the uncoupled modal equation of motion

1

11mag + 1

3
11m —q = =posinwt
m 2

k
22mgs + 322m — g2 = po sin wt
m

Note that all the terms are dimensionally correct. Dividing by M; both equations, we

have |
. 2 Po .
—w =3/2 sin wt
i+ e =27 -
G2 + Swqu = 2]2)70771 sin wt

Giacomo Boffi Multi DoF Systems



We set
& = Cisinwt, €= —w?Cysinwt

and substitute in the first modal EoM:

k
C1 (w% - w2) sinwt = %% o sin wt
solving for C4
3 o
O = =
T 22T W w2
and, analogously,
1 2
b 20

with A = Po/k.



2 DOF System
Integral

The integrals, for our loading, are thus

q1(t) = Ay sinwit + By coswit + Ch sinwt,
q2(t) = Az sinwat + Ba coswat + Co sinwt,

and, for a system initially at rest, it is

q1(t) = C (sinwt — By sinwit)
q2(t) = Cs2 (sinwt — B2 sinwat) ,
where §8; = w/u,
We are interested in structural degrees of freedom, too...

{xl(t) = (Y11 q1(t) + P12 q2(t))
w2(t) = (Y21 1 (1) + 1h22 q2(1))

N  11,iti DoF System
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The response in modal coordinates

To have a feeling of the response in modal coordinates, let's say that the frequency of the load

is w = 2w, hence B = \% =4 and By = 273 = 1.15470.
4

Modal Response

0.1

qi/ Ast
=)
<)

-0.1

wot

In the graph above, the responses are plotted against an adimensional time coordinate a with

a = wopt, while the ordinates are adimensionalised with respect to Ag = %’

Giacomo Boffi Multi DoF Systems



2 DOF System

The response in structural coor

Using the same normalisation factors, here are the response functions in terms of
T1 = P11q1 + Y12q2 and Ta = P21q1 + P22qa:

Structural Response

— X1
— X2

wot



2 DOF System

The response in structural

And the displacement of the centre of mass plotted along with the difference in displacements.

Structural Response Tweaked

— (4% + 20)/6
=04 — (o-x)

0 10 20 30 40 50
wot
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