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Eigenvector Expansion

For a N -DOF system, it is possible and often advantageous to represent
the displacements x in terms of a linear combination of the free vibration
modal shapes, the eigenvectors, by the means of a set of modal
coordinates,

x =

N∑
1

ψiqi = Ψq.

The eigenvectors play a role analogous to the role played by trigonometric
functions in Fourier Analysis,
▶ the eigenvectors possess orthogonality properties,
▶ the response can be approximated using only a few low frequency

terms.
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Inverting Eigenvector Expansion

The columns of the eigenmatrix Ψ are the N linearly indipendent
eigenvectors ψi, hence the eigenmatrix is non-singular and it is always
correct to write q = Ψ−1x.
However, it is not necessary to invert the eigenmatrix...
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Inverting Eigenvector Expansion
The modal expansion is

x =
∑

ψiqi = Ψ q;

multiply each member by ΨTM , taking into account that
M⋆ = ΨTMΨ:

ΨTMx = ΨTMΨq ⇒ ΨTMx =M⋆q

but M⋆ is a diagonal matrix, hence (M⋆)−1 = {δij/Mi} and we can write

q =M⋆−1ΨTMx, or qi =
ψi

TMx

Mi
.

Note: this formula works also when we don’t know all the eigenvectors and the inversion
of a partial, rectangular Ψ is not feasible.
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Undamped System

Substituting the modal expansion x = Ψ q into the equation of motion,
Mẍ+Kx = p(t),

MΨq̈ +KΨq = p(t).

Premultiplying each term by ΨT and using the orthogonality of the
eigenvectors with respect to the structural matrices, for each modal DOF
we have an indipendent equation of dynamic equilibrium,

Mi q̈i + ω2
iMiqi = p⋆i (t), i = 1, . . . , N.

The equations of motion written in terms of nodal coordinates constitute a system of N
interdipendent, coupled differential equations, written in terms of modal coordinates
constitute a set of N indipendent, uncoupled differential equations.
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Damped System
For a damped system, the equation of motion is

M ẍ+C ẋ+Kx = p(t)

and in modal coordinates

Mi q̈i +ψ
TCΨ q̇ + ω2

iMiqi = p⋆i (t).

With ψT
i Cψj = cij the i-th equation of dynamic equilibrium is

Mi q̈i +
∑
j

cij q̇j + ω2
iMiqi = p⋆i (t), i = 1, . . . , N ;

The equations of motion in modal coordinates are uncoupled only if cij = δijCi.

If we define the damping matrix as

C =
∑
b

cbM
(
M−1K

)b
,

we know that, as required,

cij = δijCi with Ci (= 2ζiMiωi) =
∑
b

cb
(
ω2
i

)b
.
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Damped Systems, a Comment

If the response is computed by modal superposition, it is usually preferred
a simpler but equivalent procedure: for each mode of interest the analyst
imposes a given damping ratio and the integration of the modal equation
of equilibrium is carried out as usual.

The
∑

cb . . . procedure is useful when, e.g. for non-linear problems, the
integration of the eq. of motion is carried out in nodal coordinates,
because it is easier to specify damping properties globally as elastic modes
properties (that can be measured or deduced from similar outsets) than to
assign correct damping properties at the FE level and assembling C by the
FEM.
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Initial Conditions
For a damped system, the modal response can be evaluated, for rest initial
conditions, using the Duhamel integral,

qi(t) =
1

Miωi

∫ t

0
pi(τ)e

−ζiωi(t−τ) sinωDi(t− τ) dτ

For different initial conditions x0, ẋ0, we can easily have the initial
conditions in modal coordinates:

q0 =M
⋆−1ΨTMx0

q̇0 =M
⋆−1ΨTMẋ0

and the total modal response can be obtained by superposition of
Duhamel integral and free vibrations,

qi(t) = e−ζiωit(qi,0 cosωDit+
q̇i,0 + qi,0ζiωi

ωDi
sinωDit) + · · ·
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Having computed all the N modal responses, qi(t), the response in terms
of nodal coordinates is the sum of all the N eigenvectors, each multiplied
by the corresponding modal response:

x(t) =
N∑
i=1

ψiqi(t)

= ψ1q1(t) +ψ2q2(t) + · · ·+ψNqN (t)

Giacomo Boffi Truncated Sums, Matrix Iteration



Eigenvector Expansion

Uncoupled Equations of Motion

Truncated Sum
Definition
Elastic Forces
Example



Eigenvector Expansion Uncoupled Equations of Motion Truncated Sum Definition Elastic Forces Example

Truncated sum

A truncated sum uses only M < N of the lower frequency modes

x(t) ≈
∑M<N

i=1 ψiqi(t),

and, under wide assumptions, gives you a good approximation of the
structural response.

The importance of truncated sum approximation is twofold:
▶ less computational effort: less eigenpairs to calculate, less equation of motion to

integrate etc
▶ in FEM models the higher modes are rough approximations to structural ones

(mostly due to uncertainties in mass distribution details) and the truncated sum
excludes potentially spurious contributions from the response.

Giacomo Boffi Truncated Sums, Matrix Iteration



Eigenvector Expansion Uncoupled Equations of Motion Truncated Sum Definition Elastic Forces Example

Elastic Forces

Until now, we showed interest in displacements only, but we are interested
in elastic forces too. We know that elastic forces can be expressed in
terms of displacements and the stiffness matrix:

fS(t) =Kx(t) =Kψ1q1(t) +Kψ2q2(t) + · · · .

From the characteristic equation we know that

Kψi = ω2
iMψi

substituting in the previous equation

fS(t) = ω2
1Mψ1q1(t) + ω2

2Mψ2q2(t) + · · · .
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Elastic Forces, 2

The high frequency modes contribution to the elastic forces, e.g.

fS(t) = ω2
1Mψ1q1(t) + · · ·+ ω2

20Mψ20q20(t) + · · · ,

when compared to low frequency mode contributions are more important
than their contributions to displacement, because of the multiplicative
term ω2

i .
From this fact follows that, to estimate internal forces within a given
accuracy a greater number of modes must be considered in a truncated
sum than the number required to estimate displacements within the same
accuracy.
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Example: problem statement

k1 = 120MN/m, m1 = 200 t,
k2 = 240MN/m, m2 = 300 t,
k3 = 360MN/m, m3 = 400 t.

k2

k1

k3

m1

m2

m3

x3

x2

x1

1. The above structure is subjected to these initial conditions,

xT
0 =

{
5mm 4mm 3mm

}
,

ẋT
0 =

{
0 9mm/s 0

}
.

Write the equation of motion using modal superposition.
2. The above structure is subjected to a half-sine impulse,

pT (t) =
{
1 2 2

}
2.5MN sin

π t

t1
, with t1 = 0.02 s.

Write the equation of motion using modal superposition.
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Example: structural matrices

k2

k1

k3

m1

m2

m3

x3

x2

x1

k1 = 120MN/m, m1 = 200 t,
k2 = 240MN/m, m2 = 300 t,
k3 = 360MN/m, m3 = 400 t.

The structural matrices can be written

K = k

 1 −1 0
−1 3 −2
0 −2 5

 = kK, with k = 120
MN
m ,

M = m

2 0 0
0 3 0
0 0 4

 = mM , with m = 100000 kg.
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Example: adimensional eigenvalues
We want the solutions of the characteristic equation, so we start writing
that the determinant of the equation must be zero:∥∥∥K − ω2

k/mM
∥∥∥ =

∥∥K − Ω2M
∥∥ = 0,

with ω2 = 1200
( rad

s
)2

Ω2.
Expanding the determinant∥∥∥∥∥∥

1− 2Ω2 −1 0
−1 3− 3Ω2 −2
0 −2 5− 4Ω2

∥∥∥∥∥∥ = 0

we have the following algebraic equation of 3rd order in Ω2

24

(
Ω6 − 11

4
Ω4 +

15

8
Ω2 − 1

4

)
= 0.
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Example: table of eigenvalues etc

Here are the adimensional roots Ω2
i , i = 1, 2, 3, the dimensional

eigenvalues ω2
i = 1200 rad2

s2 Ω2
i and all the derived dimensional quantities:

Ω2
1 = 0.17573 Ω2

2 = 0.8033 Ω2
3 = 1.7710

ω2
1 = 210.88 ω2

2 = 963.96 ω2
3 = 2125.2

ω1 = 14.522 ω2 = 31.048 ω3 = 46.099

f1 = 2.3112 f2 = 4.9414 f3 = 7.3370

T1 = 0.43268 T3 = 0.20237 T3 = 0.1363
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Example: eigenvectors and modal matrices
With ψ1j = 1, using the 2nd and 3rd equations,[

3− 3Ω2
j −2

−2 5− 4Ω2
j

]{
ψ2j

ψ3j

}
=

{
1
0

}
The above equations must be solved for j = 1, 2, 3. The solutions are finally collected in
the eigenmatrix

Ψ =

 1 1 1
+0.648535272183 −0.606599092464 −2.54193617967
+0.301849953585 −0.678977475113 +2.43962752148

 .
The Modal Matrices are

M⋆ =

362.6 0 0
0 494.7 0
0 0 4519.1

× 103 kg,

K⋆ =

76.50 0 0
0 477.0 0
0 0 9603.9

× 106
N
m
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Example: initial conditions in modal coordinates

q0 = (M⋆)−1ΨTM


5
4
3

 mm =


+5.9027
−1.0968
+0.1941

 mm,

q̇0 = (M⋆)−1ΨTM


0
9
0

 mm
s =


+4.8288
−3.3101
−1.5187

 mm
s
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Example: structural response

These are the displacements, in mm

x1 = +5.91 cos(14.5t+ .06) + 1.10 cos(31.0t− 3.04) + 0.20 cos(46.1t− 0.17)

x2 = +3.83 cos(14.5t+ .06)− 0.67 cos(31.0t− 3.04)− 0.50 cos(46.1t− 0.17)

x3 = +1.78 cos(14.5t+ .06)− 0.75 cos(31.0t− 3.04) + 0.48 cos(46.1t− 0.17)

and these the elastic/inertial forces, in kN

x1 = +249. cos(14.5t+ .06) + 212. cos(31.0t− 3.04) + 084. cos(46.1t− 0.17)

x2 = +243. cos(14.5t+ .06)− 193. cos(31.0t− 3.04)− 319. cos(46.1t− 0.17)

x3 = +151. cos(14.5t+ .06)− 288. cos(31.0t− 3.04) + 408. cos(46.1t− 0.17)

As expected, the contributions of the higher modes are more important for the forces,
less important for the displacements.
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Part II

Matrix Iteration Procedures
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Introduction

Dynamic analysis of MDOF systems based on modal superposition is both
simple and efficient
▶ simple: the modal response can be easily computed, analitically or

numerically, with the techniques we have seen for SDOF systems,
▶ efficient: in most cases, only the modal responses of a few lower

modes are required to accurately describe the structural response.
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Introduction

The structural matrices being easily assembled using the FEM, the modal
superposition procedure is ready to be applied to structures with
thousands, millions of DOF’s!

But wait, we can know how to compute the eigenpairs only when the
analyzed structure has very few degrees of freedom...
We will discuss how it is possible to compute the eigenpairs of arbitrarily
large dynamic systems using the so called Matrix Iteration procedure (and
a number of variations derived from this fundamental idea).
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Equilibrium

First, we will see an iterative procedure whose outputs are the first, or
fundamental, mode shape vector and the corresponding eigenvalue.
When an undamped system freely vibrates with a harmonic time
dependency of frequency ωi, the equation of motion, simplifying the time
dependency, is

Kψi = ω2
iMψi.

In equilibrium terms, the elastic forces are equal to the inertial forces when
the systems oscillates with frequency ω2

i and mode shape ψi
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Proposal of an iterative procedure

Our iterative procedure will be based on finding a new displacement vector
xn+1 such that the elastic forces fS =Kxi+1 are in equilibrium with the
inertial forces due to the old displacement vector xn, fI = ω2

iM xn, that
is

Kxn+1 = ω2
iM xn.

Premultiplying by the inverse of K and introducing the Dynamic Matrix,
D =K−1M

xn+1 = ω2
iK

−1M xn = ω2
iDxn.

In the generative equation above we miss a fundamental part, the square
of the free vibration frequency ω2

i .
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The Matrix Iteration Procedure, 1

This problem is solved considering the xn as a sequence of normalized
vectors and introducing the idea of an unnormalized new displacement
vector, x̂n+1,

x̂n+1 =Dxn,

note that we removed the explicit dependency on ω2
i .
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The Matrix Iteration Procedure, 2

The normalized vector is obtained applying to x̂n+1 a normalizing factor,
Fn+1,

xn+1 =
x̂n+1

Fn+1
,

but xn+1 = ω2
iDxn = ω2

i x̂n+1, ⇒ 1

F
= ω2

i

If we agree that, near convergence, xn+1 ≈ xn, substituting in the
previous equation we have

xn+1 ≈ xn = ω2
i x̂n+1 ⇒ ω2

i ≈ xn

x̂n+1
.

Of course the division of two vectors is not an option, so we want to twist
it into something useful.
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Of course the division of two vectors is not an option, so we want to twist
it into something useful.
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Normalization
First, consider xn = ψi: in this case, for j = 1, . . . , N it is

xn,j/x̂n+1,j = ω2
i .

When xn ̸= ψi it is possible to demonstrate that we can bound the
eigenvalue

min
j=1,...,N

{
xn,j
x̂n+1,j

}
≤ ω2

i ≤ max
j=1,...,N

{
xn,j
x̂n+1,j

}
.

A more rational approach would make reference to a proper vector norm,
so using our preferred vector norm we can write

ω2
i ≈

x̂T
n+1M xn

x̂T
n+1M x̂n+1

,

(if memory helps, this is equivalent to the R11 approximation, that we introduced
studying Rayleigh quotient refinements).
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Proof of Convergence, 1
Until now we postulated that the sequence xn converges to some,
unspecified eigenvector ψi, now we will demonstrate that the sequence
converge to the first, or fundamental mode shape,

lim
n→∞

xn = ψ1.

1. Expand x0 in terms of eigenvectors an modal coordinates:

x0 = ψ1q1,0 +ψ2q2,0 +ψ3q3,0 + · · · .

2. The inertial forces, assuming that the system is vibrating according to
the fundamental frequency, are

fI,n=0 = ω2
1M (ψ1q1,0 +ψ2q2,0 +ψ3q3,0 + · · · )

=M

(
ω2
1ψ1q1,0

ω2
1

ω2
1

+ ω2
2ψ2q2,0

ω2
1

ω2
2

+ · · ·
)
.
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Proof of Convergence, 2

3. The deflections due to these forces (no hat!, we have multiplied by
ω2
1) are

xn=1 =K
−1M

(
ω2
1ψ1q1,0

ω2
1

ω2
1

+ ω2
2ψ2q2,0

ω2
1

ω2
2

+ · · ·
)
,

(note that every term has been multiplied and divided by the
corresponding eigenvalue ω2

i ).
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Proof of Convergence, 3

4. With ω2
jMψj =Kψj , substituting and simplifying K−1K = I,

xn=1 =K
−1

(
Kψ1q1,0

(
ω2
1

ω2
1

)1

+

Kψ2q2,0

(
ω2
1

ω2
2

)1

+

Kψ3q3,0

(
ω2
1

ω2
3

)1

+ · · ·

)

= ψ1q1,0
ω2
1

ω2
1

+ψ2q2,0
ω2
1

ω2
2

+ψ3q3,0
ω2
1

ω2
3

+ · · · ,
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Proof of Convergence, 4

5. applying again this procedure

xn=2 =

(
ψ1q1,0

(
ω2
1

ω2
1

)2

+ψ2q2,0

(
ω2
1

ω2
2

)2

+ψ3q3,0

(
ω2
1

ω2
3

)2

+ · · ·

)
,

6. applying the procedure n times

xn =

(
ψ1q1,0

(
ω2
1

ω2
1

)n

+ψ2q2,0

(
ω2
1

ω2
2

)n

+ψ3q3,0

(
ω2
1

ω2
3

)n

+ · · ·
)
.
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Proof of Convergence, 5

Going to the limit,
lim
n→∞

xn = ψ1q1,0

because

lim
n→∞

(
ω2
1

ω2
j

)n

= δ1j

Consequently,
lim
n→∞

|xn|
|x̂n|

= ω2
1
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Purified Vectors
If we know ψ1 and ω2

1 from the matrix iteration procedure it is possible to
compute the second eigenpair, following a slightly different procedure.

Express the initial iterate in terms of the (unknown) eigenvectors,

xn=0 = Ψ qn=0

and premultiply by the (known) ψT
1M :

ψT
1M xn=0 = M1q1,n=0

solving for q1,n=0

q1,n=0 =
ψT

1M xn=0

M1
.

Knowing the amplitude of the 1st modal contribution to xn=0 we can
write a purified vector,

yn=0 = xn=0 −ψ1q1,n=0.
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Convergence (?)

It is easy to demonstrate that using yn=0 as our starting vector

lim
n→∞

yn = ψ2q2,n=0, lim
n→∞

|yn|
|ŷn|

= ω2
2.

because the initial amplitude of the first mode is null.

Due to numerical errors in the determination of fundamental mode and in
the procedure itself, using a plain matrix iteration the procedure however
converges to the 1st eigenvector, so to preserve convergence to the 2nd
mode it is necessary that the iterated vector yn is purified at each step
n.
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Purification Procedure

The purification procedure is simple, at each step the amplitude of the 1st
mode is first computed, then removed from the iterated vector yn

q1,n = ψT
1Myn/M1,

ŷn+1 =D (yn −ψ1q1,n) =D

(
I − 1

M1
ψ1ψ

T
1M

)
yn

Introducing the sweeping matrix S1 = I − 1
M1
ψ1ψ

T
1M and the modified

dynamic matrix D2 =DS1, we can write

ŷn+1 =DS1yn =D2yn.

This is known as matrix iteration with sweeps.
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Third Mode

Using again the idea of purifying the iterated vector, starting with the knowledge of the
first and the second eigenpair,

ŷn+1 =D (yn −ψ1q1,n −ψ2q2,n)

with qn,1 as before and
q2,n = ψT

2 Myn/M2,

substituting in the expression for the purified vector

ŷn+1 =D
(
I − 1

M1
ψ1ψ

T
1 M︸ ︷︷ ︸

S1

− 1

M2
ψ2ψ

T
2 M

)
yn

The conclusion is that the sweeping matrix and the modified dynamic matrix to be used
to compute the 3rd eigenvector are

S2 = S1 −
1

M2
ψ2ψ

T
2 M , D3 =DS2.
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Generalization to Higher Modes

The results obtained for the third mode are easily generalised.
It is easy to verify that the following procedure can be used to compute all the modes.

Define S0 = I, take i = 1,
1. compute the modified dynamic matrix to be used for mode i,

Di =DSi−i

2. compute ψi using the modified dynamic matrix;
3. compute the modal mass Mi = ψ

TMψ;
4. compute the sweeping matrix Si that sweeps the contributions of the first i modes

from trial vectors,
Si = Si−1 −

1

Mi
ψiψ

T
i M ;

5. increment i, GOTO 1.

Well, we finally have a method that can be used to compute all the eigenpairs of our
dynamic problems, full circle!
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Discussion

The method of matrix iteration with sweeping is not used in production
because

1. D is a full matrix, even if M and K are banded matrices, and the
matrix product that is the essential step in every iteration is
computationally onerous,

2. the procedure is however affected by numerical errors,
so, after having demonstrated that it is possible to compute all the
eigenvectors of a large problem using an iterative procedure it is time to
look for different, more efficient iterative procedures.
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Introduction to Inverse Iteration

Inverse iteration is based on the fact that the symmetric stiffness matrix
has a banded structure, that is a relatively large triangular portion of the
matrix is composed by zeroes.

The banded structure is due to the FEM model: in every equation
of equilibrium the only non zero elastic force coefficients are due
to the degrees of freedom of the few FE’s that contain the degree
of freedom for which the equilibrium is written.
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Definition of LU decomposition

Every symmetric, banded matrix can be subjected to a so called LU
decomposition, that is, for K we write

K = LU

where L and U are, respectively, a lower- and an upper-banded matrix.
If we denote with b the bandwidth of K, we have

L =
[
lij
]

with lij ≡ 0 for
{
i < j

j < i− b

and

U =
[
uij
]

with uij ≡ 0 for
{
i > j

j > i+ b
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Twice the equations?

In this case, with wn =M xn, the recursion can be written

LU xn+1 = wn

or as a system of equations,

U xn+1 = zn+1

Lzn+1 = wn

Apparently, we have doubled the number of unknowns, but the zj ’s can be
easily computed by the procedure of back substitution.
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Back Substitution

Temporarily dropping the n and n+ 1 subscripts, we can write

z1 = (w1)/l11

z2 = (w2 − l21z1)/l22

z3 = (w3 − l31z1 − l32z2)/l33

· · ·

zi = (wi −
i−1∑

j=i−b

lijzj)/lii

· · ·

The x are then given by U x = z.
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Back Substitution
We have computed z by back substitution, we must solve U x = z but U
is upper triangular, so we have

xN = (zN )/uNN

xN−1 = (zN−1 − uN−1,NzN )/uN−1,N−1

xN−2 = (zN−2 − uN−2,NzN − uN−2,N−1zN−1)/uN−2,N−2

· · ·

xN−j = (zN−j −
j−1∑
k=0

uN−j,N−kzN−k)/uN−j,N−j ,

For moderately large systems, the reduction in operations count given by
back substitution with respect to matrix multiplication is so large that the
additional cost of the LU decomposition is negligible.
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Introduction to Shifts

Inverse iteration can be applied to each step of matrix iteration with
sweeps, or to each step of a different procedure intended to compute all
the eigenpairs, the matrix iteration with shifts.
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Matrix Iteration with Shifts, 1
If we write

ω2
i = µ+ λi,

where µ is a shift and λi is a shifted eigenvalue, the eigenvalue problem can be
formulated as

Kψi = (µ+ λi)Mψi

or
(K − µM)ψi = λiMψi.

If we introduce a modified stiffness matrix

K =K − µM ,

we recognize that we have a new problem, that has exactly the same eigenvectors
and shifted eigenvalues,

Kϕi = λiMϕi,

where
ϕi = ψi, λi = ω2

i − µ.
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Matrix Iteration with Shifts, 2

The shifted eigenproblem can be solved, e.g., by matrix iteration and the procedure will
converge to the smallest absolute value shifted eigenvalue and to the associated
eigenvector. After convergence is reached,

ψi = ϕi, ω2
i = λi + µ.

The convergence of the method can be greatly enhanced if the shift µ is updated every
few steps during the iterative procedure using the current best estimate of λi,

λi,n+1 =
x̂n+1M xn

x̂n+1M x̂n+1
,

to improve the modified stiffness matrix to be used in the following iterations,

K =K − λi,n+1M

Much thought was spent on the problem of choosing the initial shifts, so that all the
eigenvectors can be computed in sequence without missing any of them.
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Rayleigh Quotient for Discrete Systems

The matrix iteration procedures are usually used in conjunction with methods derived
from the Rayleigh Quotient method.

The Rayleigh Quotient method was introduced using distributed flexibilty systems and
an assumed shape function, but we have seen also an example where the Rayleigh
Quotient was computed for a discrete system using an assumed shape vector.
The procedure to be used for discrete systems can be summarized as

x(t) = ϕZ0 sinωt, ẋ(t) = ωϕZ0 cosωt,

2Tmax = ω2ϕTMϕ, 2Vmax = ϕ
TKϕ,

equating the maxima, we have

ω2 =
ϕTKϕ

ϕTMϕ
=

k⋆

m⋆
,

where ϕ is an assumed shape vector, not an eigenvector.
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Ritz Coordinates

For a N DOF system, an approximation to a displacement vector x can
be written in terms of a set of M < N assumed shape, linearly
independent vectors,

ϕi, i = 1, . . . ,M < N

and a set of Ritz coordinates zi, i− 1, . . . ,M < N :

x =
∑
i

ϕizi = Φ z.

We say approximation because a linear combination of M < N vectors
cannot describe every point in a N -space.
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Rayleigh Quotient in Ritz Coordinates

We can write the Rayleigh quotient as a function of the Ritz coordinates,

ω2(z) =
zTΦTKΦz

zTϕTM ϕz
=

k(z)

m(z)
,

but this is not an explicit function for any modal frequency...

On the other hand, we have seen that frequency estimates are always
greater than true frequencies, so our best estimates are the the local
minima of ω2(z), or the points where all the derivatives of ω2(z) with
respect to zi are zero:

∂ω2(z)

∂zj
=
m(z)

∂k(z)

∂zi
− k(z)

∂m(z)

∂zi
(m(z))2

= 0, for i = 1, . . . ,M < N
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Rayleigh Quotient in Ritz Coordinates

Observing that
k(z) = ω2(z)m(z)

we can substitute into and simplify the preceding equation,

∂k(z)

∂zi
− ω2(z)

∂m(z)

∂zi
= 0, for i = 1, . . . ,M < N
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Rayleigh Quotient in Ritz Coordinates
With the positions

ΦTKΦ =K and ΦTM Φ =M

we have
k(z) = zTKz =

∑
r

∑
s

krszrzs,

hence {
∂k(z)

∂zi

}
=

{∑
s

kiszs +
∑
r

krizr

}
.

Due to symmetry, kri = kir and consequently{
∂k(z)

∂zi

}
=

{
2
∑
s

kiszs

}
= 2Kz.

Analogously {
∂m(z)

∂zi

}
= 2Mz.
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Reduced Eigenproblem

Substituting these results in ∂k(z)
∂zi

− ω2(z)∂m(z)
∂zi

= 0 we can write a new
eigenvector problem, in the M DOF Ritz coordinates space, with reduced
M ×M matrices:

K z − ω2M z = 0.
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Modal Superposition?

After solving the reduced eigenproblem, we have a set of M eigenvalues
ω2
i and a corresponding set of M eigenvectors zi. What is the relation

between these results and the eigenpairs of the original problem?
The ω2

i clearly are approximations from above to the real eigenvalues, and
if we write ψi = Φzi we see that, being

ψ
T
i Mψj = z

T
i ΦTMΦ︸ ︷︷ ︸

M

zj = M iδij ,

the approximated eigenvectors ψi are orthogonal with respect to the
structural matrices and can be used in ordinary modal superposition
techniques.
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A Last Question

One last question: how many ω2
i and ψi are effective approximations to

the true eigenpairs? Experience tells that an effective approximation is to
be expected for the first M/2 eigenthings.
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The structural matrices

K = k


+2 −1 0 0 0
−1 +2 −1 0 0
0 −1 +2 −1 0
0 0 −1 +2 −1
0 0 0 −1 +1

 M = m


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The Ritz base vectors and the reduced matrices,

Φ =


0.2 −0.5
0.4 −1.0
0.6 −0.5
0.8 +0.0
1.0 1.0


K̄ = k

[
0.2 0.2
0.2 2.0

]
M̄ = m

[
2.2 0.2
0.2 2.5

]

Red. eigenproblem (ρ = ω2m/k):
[
2− 22ρ 2− 2ρ
2− 2ρ 20− 25ρ

]{
z1
z2

}
=

{
0
0

}
The roots are ρ1 = 0.0824, ρ2 = 0.800, the frequencies are
ω1 = 0.287

√
k/m [ = 0.285], ω2 = 0.850

√
k/m [ = 0.831], while the k/m normalized

exact eigenvalues are [0.08101405, 0.69027853].
The first eigenvalue is estimated with good approximation.



RR Example

m

m

m

m

k

k

k

k

m

k

x5

x4

x3

x2

x1

The structural matrices

K = k


+2 −1 0 0 0
−1 +2 −1 0 0
0 −1 +2 −1 0
0 0 −1 +2 −1
0 0 0 −1 +1

 M = m


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



The Ritz base vectors and the reduced matrices,

Φ =


0.2 −0.5
0.4 −1.0
0.6 −0.5
0.8 +0.0
1.0 1.0


K̄ = k

[
0.2 0.2
0.2 2.0

]
M̄ = m

[
2.2 0.2
0.2 2.5

]

Red. eigenproblem (ρ = ω2m/k):
[
2− 22ρ 2− 2ρ
2− 2ρ 20− 25ρ

]{
z1
z2

}
=

{
0
0

}
The roots are ρ1 = 0.0824, ρ2 = 0.800, the frequencies are
ω1 = 0.287

√
k/m [ = 0.285], ω2 = 0.850

√
k/m [ = 0.831], while the k/m normalized

exact eigenvalues are [0.08101405, 0.69027853].
The first eigenvalue is estimated with good approximation.



RR Example

m

m

m

m

k

k

k

k

m

k

x5

x4

x3

x2

x1

The structural matrices

K = k


+2 −1 0 0 0
−1 +2 −1 0 0
0 −1 +2 −1 0
0 0 −1 +2 −1
0 0 0 −1 +1

 M = m


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The Ritz base vectors and the reduced matrices,

Φ =


0.2 −0.5
0.4 −1.0
0.6 −0.5
0.8 +0.0
1.0 1.0


K̄ = k

[
0.2 0.2
0.2 2.0

]
M̄ = m

[
2.2 0.2
0.2 2.5

]

Red. eigenproblem (ρ = ω2m/k):
[
2− 22ρ 2− 2ρ
2− 2ρ 20− 25ρ

]{
z1
z2

}
=

{
0
0

}
The roots are ρ1 = 0.0824, ρ2 = 0.800, the frequencies are
ω1 = 0.287

√
k/m [ = 0.285], ω2 = 0.850

√
k/m [ = 0.831], while the k/m normalized

exact eigenvalues are [0.08101405, 0.69027853].
The first eigenvalue is estimated with good approximation.



RR Example

m

m

m

m

k

k

k

k

m

k

x5

x4

x3

x2

x1

The structural matrices

K = k


+2 −1 0 0 0
−1 +2 −1 0 0
0 −1 +2 −1 0
0 0 −1 +2 −1
0 0 0 −1 +1

 M = m


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The Ritz base vectors and the reduced matrices,

Φ =


0.2 −0.5
0.4 −1.0
0.6 −0.5
0.8 +0.0
1.0 1.0


K̄ = k

[
0.2 0.2
0.2 2.0

]
M̄ = m

[
2.2 0.2
0.2 2.5

]

Red. eigenproblem (ρ = ω2m/k):
[
2− 22ρ 2− 2ρ
2− 2ρ 20− 25ρ

]{
z1
z2

}
=

{
0
0

}

The roots are ρ1 = 0.0824, ρ2 = 0.800, the frequencies are
ω1 = 0.287

√
k/m [ = 0.285], ω2 = 0.850

√
k/m [ = 0.831], while the k/m normalized

exact eigenvalues are [0.08101405, 0.69027853].
The first eigenvalue is estimated with good approximation.



RR Example

m

m

m

m

k

k

k

k

m

k

x5

x4

x3

x2

x1

The structural matrices

K = k


+2 −1 0 0 0
−1 +2 −1 0 0
0 −1 +2 −1 0
0 0 −1 +2 −1
0 0 0 −1 +1

 M = m


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The Ritz base vectors and the reduced matrices,

Φ =


0.2 −0.5
0.4 −1.0
0.6 −0.5
0.8 +0.0
1.0 1.0


K̄ = k

[
0.2 0.2
0.2 2.0

]
M̄ = m

[
2.2 0.2
0.2 2.5

]

Red. eigenproblem (ρ = ω2m/k):
[
2− 22ρ 2− 2ρ
2− 2ρ 20− 25ρ

]{
z1
z2

}
=

{
0
0

}
The roots are ρ1 = 0.0824, ρ2 = 0.800, the frequencies are
ω1 = 0.287

√
k/m [ = 0.285], ω2 = 0.850

√
k/m [ = 0.831], while the k/m normalized

exact eigenvalues are [0.08101405, 0.69027853].
The first eigenvalue is estimated with good approximation.



Introduction Fundamental Mode Analysis Second Mode Analysis Higher Modes Inverse Iteration Matrix Iteration with Shifts Rayleigh MethodsRayleigh-Ritz Method Rayleigh-Ritz Example Subspace iteration

Rayleigh-Ritz Example

The Ritz coordinates eigenvector matrix is Z =

[
1.329 0.03170

−0.1360 1.240

]
.

The RR eigenvector matrix, Φ and the exact one, Ψ:

Φ =


+0.3338 −0.6135
+0.6676 −1.2270
+0.8654 −0.6008
+1.0632 +0.0254
+1.1932 +1.2713

 , Ψ =


+0.3338 −0.8398
+0.6405 −1.0999
+0.8954 −0.6008
+1.0779 +0.3131
+1.1932 +1.0108

 .
The accuracy of the estimates for the 1st mode is very good, on the contrary the 2nd
mode estimates are in the order of a few percents.

It may be interesting to use Φ̂ =K−1M Φ as a new Ritz base to get a new estimate of
the Ritz and of the structural eigenpairs.
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Introduction to Subspace Iteration

Rayleigh-Ritz gives good estimates for p ≈ M/2 modes, due also to the
arbitrariness in the choice of the Ritz reduced base Φ.
Having to solve a M = 2p order problem to find p eigenvalues is very
costly, as the operation count is ∝ O(M3).

Choosing better Ritz base vectors, we can use less vectors and solve a
smaller (much smaller in terms of operations count) eigenvalue problem.
If one thinks of it, with a M = 1 base we can always compute, within
arbitrary accuracy, one eigenvector using the Matrix Iteration procedure,
isn’t it?
And the trick is to change the base at every iteration...
The Subspace Iteration procedure is a variant of the Matrix Iteration
procedure, where we apply the same idea, to use the response to inertial
loading in the next step, not to a single vector but to a set of different
vectors at once.
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Statement of the procedure

The first M eigenvalue equations can be written in matrix algebra, in
terms of an N ×M matrix of eigenvectors Φ and an M ×M diagonal
matrix Λ that collects the eigenvalues

K
N×N

Φ
N×M

= M
N×N

Φ
N×M

Λ
M×M

Using again the hat notation for the unnormalized iterate, from the
previous equation we can write

KΦ̂1 =MΦ0

where Φ0 is the matrix, N ×M , of the zero order trial vectors, and Φ̂1 is
the matrix of the non-normalized first order trial vectors.
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Orthonormalization

To proceed with iterations,
1. the trial vectors in Φ̂n+1 must be orthogonalized, so that each trial

vector converges to a different eigenvector instead of collapsing to the
first eigenvector,

2. all the trial vectors must be normalized, so that the ratio between the
normalized vectors and the unnormalized iterated vectors converges
to the corresponding eigenvalue.

These operations can be performed in different ways (e.g.,
ortho-normalization by Gram-Schmidt process).
Another possibility to do both tasks at once is to solve a Rayleigh-Ritz
eigenvalue problem, defined in the Ritz base constituted by the vectors in
Φ̂n+1.
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Associated Eigenvalue Problem

Developing the procedure for n = 0, with the generalized matrices

K⋆
1 = Φ̂1

TKΦ̂1

and
M⋆

1 = Φ̂1
TMΦ̂1

the Rayleigh-Ritz eigenvalue problem associated with the orthonormalisation of Φ̂1 is

K⋆
1 Ẑ1 =M⋆

1 Ẑ1Ω
2
1.

After solving for the Ritz coordinates mode shapes, Ẑ1 and the frequencies Ω2
1, using

any suitable procedure, it is usually convenient to normalize the shapes, so that
Ẑ1

TM⋆
1 Ẑ1 = I. The ortho-normalized set of trial vectors at the end of the iteration is

then written as
Φ1 = Φ̂1Ẑ1.

The entire process can be repeated for n = 1, then n = 2, n = . . . until the eigenvalues
converge within a prescribed tolerance.
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Convergence

In principle, the procedure will converge to all the M lower eigenvalues
and eigenvectors of the structural problem, but it was found that the
subspace iteration method converges faster to the lower p eigenpairs,
those required for dynamic analysis, if there is some additional trial vector;
on the other hand, too many additional trial vectors slow down the
computation without ulterior benefits.

Experience has shown that the optimal total number M of trial vectors is
the minimum of 2p and p+ 8.
The subspace iteration method makes it possible to compute simultaneosly
a set of eigenpairs within any required level of approximation, and is the
preferred method to compute the eigenpairs of a complex dynamic system.
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and eigenvectors of the structural problem, but it was found that the
subspace iteration method converges faster to the lower p eigenpairs,
those required for dynamic analysis, if there is some additional trial vector;
on the other hand, too many additional trial vectors slow down the
computation without ulterior benefits.
Experience has shown that the optimal total number M of trial vectors is
the minimum of 2p and p+ 8.
The subspace iteration method makes it possible to compute simultaneosly
a set of eigenpairs within any required level of approximation, and is the
preferred method to compute the eigenpairs of a complex dynamic system.
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