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u(x , t)

vt
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A uniform beam, (unit mass m, flexural stiffness EJ and length L )
is loaded by a load P , moving with constant velocity v(t) = v in
the time interval 0 ≤ t ≤ t0 = L/v = t0.
Plot the response in the interval 0 ≤ t ≤ t0 = L/v in terms of
u(L/2, t) and Mb(L/2, t).
NB: the beam is at rest for t = 0.

Continuous
Systems

Giacomo Boffi

Problem statement

Solution
Equation of motion

Equation of motion

F or an uniform beam, the equation of dynamic equilibrium is

m ∂2u(x , t)
∂t2 + EJ ∂4u(x , t)

∂x4 = p(x , t).

In our example, the loading function must be defined in terms of
δ(x), the Dirac’s delta distribution,

p(x , t) = P δ(x − vt).

The Dirac’s delta (or distribution) is defined by

δ(x − x0) ≡ 0 and
∫

f (x)δ(x − x0)dx = f (x0).
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The solution will be computed by separation of variables

u(x , t) = q(t)ϕ(x)

and modal analysis,

u(x , t) =
∞∑

n=1
qn(t)ϕn(x)

The relevant quantities for the modal analysis, obtained solving the
eigenvalue problem that arises from the beam boundary conditions
are

ϕn(x) = sinβnx , βn =
nπ
L ,

mn =
mL
2 , ω2

n = β4
n

EJ
m = n4π4 EJ

mL4 .
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Orthogonality relationships

For an uniform beam, the orthogonality relationships are

m
∫ L

0
ϕn(x)ϕm(x) dx = mnδnm,

EJ
∫ L

0
ϕn(x)ϕıv

m(x) dx = knδnm = mnω
2
nδnm.

(the Kroneker’s δnm is a completely different thing from Dirac’s δ, OK?).
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Decoupling the EOM
Using the orthogonality relationships, we can write an infinity of uncoupled equation of
motion for the modal coordinates.

1. The equation of motion is written in terms of the series representation of u(x , t):

m
∞∑

m=1
q̈mϕm + EJ

∞∑

m=1
qmϕıv

m = P δ(x − vt),

2. every term is multiplied by ϕn and integrated over the lenght of the beam

m
∫ L

0
ϕn

∞∑

m=1
q̈mϕm dx + EJ

∫ L

0
ϕn

∞∑

m=1
qmϕıv

m dx =

P
∫ L

0
ϕnδ(x − vt), n = 1, . . . ,∞

3. we use the ortogonality relationships and the definition of δ,

mnq̈(t) + knq(t) = P ϕn(vt) = P sin
nπ vt

L
, n = 1, . . . ,∞.
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Considering that
- the initial conditions are zero for all the modal equations,
- for each mode we have a different excitation frequency
ωn = nπv/L (and also βn = ωn/ωn),

the individual solutions are given by

qn(t) =
P
kn

1
1 − β2n

(sinωnt − βn sinωnt) , 0 ≤ t ≤ L
v

and, with kn = mnω
2
n =

mL
2 n4π4 EJ

mL4 = n4π4 EJ
2L3 , it is

qn(t) =
2

n4π4
PL3

EJ
1

1 − β2n
(sinωnt − βn sinωnt) , 0 ≤ t ≤ L

v .

It is apparent that we have resonance for βn = 1.
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Critical Velocity

Let’s start from β1 = πv/L/ω1 = 1 and solve for the velocity, say v1

v1 = ω1L/π.

It is apparent that v1 is a critical velocity vc = v1 = ω1L/π that
gives a resonance condition for the first mode response, while for
v = 2 vc the second mode is in resonance, etc.
With the position v = κv1 it is

ωn = κnω1 and βn = nκω1/n2ω1 = κ/n

and we can rewrite the solution as

qn(t) =
2PL3

π4EJ
1

n2(n2 − κ2)

(
sin(

κ

n
ωnt)− κ

n
sinωnt

)
, 0 ≤ t ≤ L

v
.

Continuous
Systems

Giacomo Boffi

Problem statement

Solution
Equation of motion

Adimensional Time Coordinate

Introducing an adimensional time coordinate ξ with t = t0ξ, noting that
ωn = n2ω1 we can write

κ

nωnt =
κ

n n2ω1 ξ t0 = κn(vcπ

L )ξ
L
κvc

= nπξ,

substituting in the solution for mode n we have

qn(ξ) =
2
π4

PL3

EJ
1

n2(n2 − κ2)

(
sin(nπξ)− κ

n sin(
n2

κ
πξ)

)
, 0 ≤ ξ ≤ 1.
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Adimensional Time and Adimensional Position

If we denote with X(t) the position of the load at time t, it is
X(t) = vt = ξL, or ξ = X/L and the expression
u(x , ξ) =

∑
qn(ξ)ϕn(x) can be interpreted as the displacement in x

when the load is positioned in ξL.
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Displacement and Bending Moment

The displacement and the bending moment are given by

u(x , ξ) = 2PL3

π4EJ

∞∑

n=1

1
n2(n2 − κ2)

(
sin(nπξ)− κ

n sin(
n2

κ
πξ)

)
sin(nπ x

L ),

Mb(x , ξ) = −EJ ∂
2u(x , ξ)
∂x2

=
2PL
π2

∞∑

n=1

1
n2 − κ2

(
sin(nπξ)− κ

n sin(
n2

κ
πξ)

)
sin(nπ x

L ).
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Normalized Midspan Deflection
If we consider the midspan deflection (bending moment) due to a static
load P on the beam, the maximum deflection (bending moment) is
expected when the load is placed at midspan, and it is

ustat(L/2, 1/2) = PL3

48EJ and Mb stat(L/2, 1/2) = PL
4 .

Normalizing the midspan displacement with respect to the maximum static
displacement, we write

∆(ξ) =
u

ustat
=

96
π4

∞∑

n=1

1
n2(n2 − κ2)

(
sin(nπξ)− κ

n sin(
n2

κ
πξ)

)
sin(nπ2 ).

Eventually we introduce a notation for the partial sum of the first N terms:

∆N(ξ) =
96
π4

N∑

n=1

1
n2(n2 − κ2)

(
sin(nπξ)− κ

n sin(
n2

κ
πξ)

)
sin(nπ2 ).
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Normalized Midspan Bending Moment

Analogously, normalizing with respect to the maximum static
bending moment, it is

µ(ξ) =
8
π2

∞∑

n=1

1
n2 − κ2

(
sin(nπξ)− κ

n sin(
n2

κ
πξ)

)
sin(nπ2 ),

the partial sum being denoted by

µN(ξ) =
8
π2

N∑

n=1

1
n2 − κ2

(
sin(nπξ)− κ

n sin(
n2

κ
πξ)

)
sin(nπ2 ).
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Error Estimates
To appreciate the approximation inherent in a truncated series, we
compare the truncated series computed for κ = 10−6 with the static
response ∆stat(ξ) = 3ξ − 4ξ3 introducing a percent error function

ϵu,N(ξ) = 100
(

1 − ∆N(ξ)|κ=10−6

∆stat(ξ)

)
for 0 ≤ ξ ≤ 1/2,

-4.0

-2.0

0.0

2.0

0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5

ε u
,N

N = 1 N = 3

-0.3
-0.2
-0.1
0.0
0.1
0.2

0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5

ε u
,N

ξ N = 5 N = 7

Using 4 terms (N = 7) the absolute error is not greater than 1/1000.
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Error Estimates
Analogously we can use the midspan bending moment, normalized
with respect to PL/4, µstat(ξ) = 2ξ to define another percent error
function

ϵM,N = 100
(

1 − µN(ξ)|κ=10−6

µstat(ξ)

)
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With 8 terms (N = 17) terms in the series, still the absolute error is
greater than 3%.
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The Plots

Eventually, we plot the normalized displacement and the normalized
bending moment for different values of κ, i.e., for different velocities.

For the displacement I used N = 11 while for the bending moment I
used N = 25.
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Normalized Midspan Displacement.
(for different velocities v = κ vc)
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