\(\left.\begin{array}{|c|c|}\hline Continuous \\
Systems \\

Giacomo Boffi\end{array}\right\}\) Croblem statement | Colution |
| :---: |
| an example |
| Giacomo Boffi |
| http://intranet.dica.polimi.it/people/boffi-giacomo |
| Dipartimento di Ingegneria Civile Ambientale e Territoriale |
| Politecnico di Milano |
| April 04, 2019 |

Problem statement

A uniform beam, (unit mass m, flexural stiffness $E J$ and length L) is loaded by a load P, moving with constant velocity $v(t)=v$ in the time interval $0 \leq t \leq t_{0}=L / v=t_{0}$.
Plot the response in the interval $0 \leq t \leq t_{0}=L / v$ in terms of $u(L / 2, t)$ and $M_{b}(L / 2, t)$.

NB: the beam is at rest for $t=0$.

Equation of motion

F or an uniform beam, the equation of dynamic equilibrium is

$$
m \frac{\partial^{2} u(x, t)}{\partial t^{2}}+E J \frac{\partial^{4} u(x, t)}{\partial x^{4}}=p(x, t) .
$$

In our example, the loading function must be defined in terms of $\delta(x)$, the Dirac's delta distribution,

$$
p(x, t)=P \delta(x-v t)
$$

The Dirac's delta (or distribution) is defined by

$$
\delta\left(x-x_{0}\right) \equiv 0 \quad \text { and } \quad \int f(x) \delta\left(x-x_{0}\right) \mathrm{d} x=f\left(x_{0}\right)
$$

Equation of motion

The solution will be computed by separation of variables

$$
u(x, t)=q(t) \phi(x)
$$

and modal analysis,

$$
u(x, t)=\sum_{n=1}^{\infty} q_{n}(t) \phi_{n}(x)
$$

The relevant quantities for the modal analysis, obtained solving the eigenvalue problem that arises from the beam boundary conditions are

$$
\begin{aligned}
& \phi_{n}(x)=\sin \beta_{n} x, \quad \beta_{n}=\frac{n \pi}{L}, \\
& m_{n}=\frac{m L}{2}, \quad \omega_{n}^{2}=\beta_{n}^{4} \frac{E J}{m}=n^{4} \pi^{4} \frac{E J}{m L^{4}} .
\end{aligned}
$$

Orthogonality relationships

For an uniform beam, the orthogonality relationships are

$$
\begin{aligned}
& m \int_{0}^{L} \phi_{n}(x) \phi_{m}(x) \mathrm{d} x=m_{n} \delta_{n m}, \\
& E J \int_{0}^{L} \phi_{n}(x) \phi_{m}^{\prime v}(x) \mathrm{d} x=k_{n} \delta_{n m}=m_{n} \omega_{n}^{2} \delta_{n m} .
\end{aligned}
$$

(the Kroneker's $\delta_{n m}$ is a completely different thing from Dirac's δ, OK?).

Decoupling the EOM

Using the orthogonality relationships, we can write an infinity of uncoupled equation of motion for the modal coordinates.

1. The equation of motion is written in terms of the series representation of $u(x, t)$:

$$
m \sum_{m=1}^{\infty} \ddot{q}_{m} \phi_{m}+E J \sum_{m=1}^{\infty} q_{m} \phi_{m}^{\prime v}=P \delta(x-v t),
$$

2. every term is multiplied by ϕ_{n} and integrated over the lenght of the beam

$$
\begin{aligned}
& m \int_{0}^{L} \phi_{n} \sum_{m=1}^{\infty} \ddot{q}_{m} \phi_{m} \mathrm{~d} x+E J \int_{0}^{L} \phi_{n} \sum_{m=1}^{\infty} q_{m} \phi_{m}^{\prime v} \mathrm{~d} x= \\
& \quad P \int_{0}^{L} \phi_{n} \delta(x-v t), \quad n=1, \ldots, \infty
\end{aligned}
$$

3. we use the ortogonality relationships and the definition of δ,

$$
m_{n} \ddot{q}(t)+k_{n} q(t)=P \phi_{n}(v t)=P \sin \frac{n \pi v t}{L}, \quad n=1, \ldots, \infty
$$

Solutions

Considering that

- the initial conditions are zero for all the modal equations,
- for each mode we have a different excitation frequency $\bar{\omega}_{n}=n \pi v / L$ (and also $\beta_{n}=\bar{\omega}_{n} / \omega_{n}$),
the individual solutions are given by

$$
q_{n}(t)=\frac{P}{k_{n}} \frac{1}{1-\beta_{n}^{2}}\left(\sin \bar{\omega}_{n} t-\beta_{n} \sin \omega_{n} t\right), \quad 0 \leq t \leq \frac{L}{v}
$$

and, with $k_{n}=m_{n} \omega_{n}^{2}=\frac{m L}{2} n^{4} \pi^{4} \frac{E J}{m L^{4}}=n^{4} \pi^{4} \frac{E J}{2 L^{3}}$, it is

$$
q_{n}(t)=\frac{2}{n^{4} \pi^{4}} \frac{P L^{3}}{E J} \frac{1}{1-\beta_{n}^{2}}\left(\sin \bar{\omega}_{n} t-\beta_{n} \sin \omega_{n} t\right), \quad 0 \leq t \leq \frac{L}{v}
$$

It is apparent that we have resonance for $\beta_{n}=1$.

Critical Velocity

It is apparent that v_{1} is a critical velocity $v_{c}=v_{1}=\omega_{1} L / \pi$ that gives a resonance condition for the first mode response, while for $v=2 v_{\mathrm{c}}$ the second mode is in resonance, etc.
With the position $v=\kappa v_{1}$ it is

$$
\bar{\omega}_{n}=\kappa n \omega_{1} \quad \text { and } \quad \beta_{n}=n \kappa \omega_{1} / n^{2} \omega_{1}=\kappa / n
$$

and we can rewrite the solution as

$$
q_{n}(t)=\frac{2 P L^{3}}{\pi^{4} E J} \frac{1}{n^{2}\left(n^{2}-\kappa^{2}\right)}\left(\sin \left(\frac{\kappa}{n} \omega_{n} t\right)-\frac{\kappa}{n} \sin \omega_{n} t\right), \quad 0 \leq t \leq \frac{L}{v} .
$$

Adimensional Time Coordinate

Continuous Systems

Introducing an adimensional time coordinate ξ with $t=t_{0} \xi$, noting that $\omega_{n}=n^{2} \omega_{1}$ we can write

$$
\frac{\kappa}{n} \omega_{n} t=\frac{\kappa}{n} n^{2} \omega_{1} \xi t_{0}=\kappa n\left(\frac{v_{c} \pi}{L}\right) \xi \frac{L}{\kappa v_{c}}=n \pi \xi,
$$

substituting in the solution for mode n we have

$$
q_{n}(\xi)=\frac{2}{\pi^{4}} \frac{P L^{3}}{E J} \frac{1}{n^{2}\left(n^{2}-\kappa^{2}\right)}\left(\sin (n \pi \xi)-\frac{\kappa}{n} \sin \left(\frac{n^{2}}{\kappa} \pi \xi\right)\right), \quad 0 \leq \xi \leq 1 .
$$

If we denote with $\mathbb{X}(t)$ the position of the load at time t, it is $\mathbb{X}(t)=v t=\xi L$, or $\xi=\mathbb{X} / L$ and the expression $u(x, \xi)=\sum q_{n}(\xi) \phi_{n}(x)$ can be interpreted as the displacement in x when the load is positioned in ξL.

Displacement and Bending Moment

The displacement and the bending moment are given by

$$
\begin{aligned}
u(x, \xi) & =\frac{2 P L^{3}}{\pi^{2} E J} \sum_{n=1}^{\infty} \frac{1}{n^{2}\left(n^{2}-\kappa^{2}\right)}\left(\sin (n \pi \xi)-\frac{\kappa}{n} \sin \left(\frac{n^{2}}{\kappa} \pi \xi\right)\right) \sin \left(n \pi \frac{x}{L}\right), \\
M_{b}(x, \xi) & =-E J \frac{\partial^{2} u(x, \xi)}{\partial x^{2}} \\
& =\frac{2 P L}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}-\kappa^{2}}\left(\sin (n \pi \xi)-\frac{\kappa}{n} \sin \left(\frac{n^{2}}{\kappa} \pi \xi\right)\right) \sin \left(n \pi \frac{x}{L}\right) .
\end{aligned}
$$

Normalized Midspan Deflection

If we consider the midspan deflection (bending moment) due to a static load P on the beam, the maximum deflection (bending moment) is expected when the load is placed at midspan, and it is

$$
u_{\text {stat }}(L / 2,1 / 2)=\frac{P L^{3}}{48 E J} \quad \text { and } \quad M_{\mathrm{b} \text { stat }}(L / 2,1 / 2)=\frac{P L}{4} .
$$

Normalizing the midspan displacement with respect to the maximum static displacement, we write

$$
\Delta(\xi)=\frac{u}{u_{\text {stat }}}=\frac{96}{\pi^{4}} \sum_{n=1}^{\infty} \frac{1}{n^{2}\left(n^{2}-\kappa^{2}\right)}\left(\sin (n \pi \xi)-\frac{\kappa}{n} \sin \left(\frac{n^{2}}{\kappa} \pi \xi\right)\right) \sin \left(n \frac{\pi}{2}\right)
$$

Eventually we introduce a notation for the partial sum of the first N terms:

$$
\Delta_{N}(\xi)=\frac{96}{\pi^{4}} \sum_{n=1}^{N} \frac{1}{n^{2}\left(n^{2}-\kappa^{2}\right)}\left(\sin (n \pi \xi)-\frac{\kappa}{n} \sin \left(\frac{n^{2}}{\kappa} \pi \xi\right)\right) \sin \left(n \frac{\pi}{2}\right)
$$

Analogously, normalizing with respect to the maximum static bending moment, it is

$$
\mu(\xi)=\frac{8}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}-\kappa^{2}}\left(\sin (n \pi \xi)-\frac{\kappa}{n} \sin \left(\frac{n^{2}}{\kappa} \pi \xi\right)\right) \sin \left(n \frac{\pi}{2}\right)
$$

the partial sum being denoted by

$$
\mu_{N}(\xi)=\frac{8}{\pi^{2}} \sum_{n=1}^{N} \frac{1}{n^{2}-\kappa^{2}}\left(\sin (n \pi \xi)-\frac{\kappa}{n} \sin \left(\frac{n^{2}}{\kappa} \pi \xi\right)\right) \sin \left(n \frac{\pi}{2}\right)
$$

Error Estimates

Continuous Systems

To appreciate the approximation inherent in a truncated series, we compare the truncated series computed for $\kappa=10^{-6}$ with the static response $\Delta_{\text {stat }}(\xi)=3 \xi-4 \xi^{3}$ introducing a percent error function

$$
\epsilon_{u, N}(\xi)=100\left(1-\frac{\left.\Delta_{N}(\xi)\right|_{\kappa=10^{-6}}}{\Delta_{\text {stat }}(\xi)}\right) \quad \text { for } 0 \leq \xi \leq 1 / 2
$$

Using 4 terms $(N=7)$ the absolute error is not greater than $1 / 1000$.

Error Estimates

Continuous Systems

Analogously we can use the midspan bending moment, normalized with respect to $P L / 4, \mu_{\text {stat }}(\xi)=2 \xi$ to define another percent error function

$$
\epsilon_{M, N}=100\left(1-\frac{\left.\mu_{N}(\xi)\right|_{\kappa=10^{-6}}}{\mu_{\mathrm{stat}}(\xi)}\right)
$$

With 8 terms $(N=17)$ terms in the series, still the absolute error is greater than 3%.

The Plots

Eventually, we plot the normalized displacement and the normalized bending moment for different values of κ, i.e., for different velocities.

For the displacement I used $N=11$ while for the bending moment I used $N=25$.

