
Homework1

Giacomo Boffi

Initial Conditions

Data

m = 42.0; k = 32000.0; z = 0.02

x0 = 200/1000; v0 = -800/1000

P = 7000; a = 1.3

Particular Integral

The loading and the assumed particular integral, as well its derivatives

𝑝(𝑡)=𝑃0exp(−𝑎𝑡),

𝜉(𝑡)=𝐶exp(−𝑎𝑡), ̇𝜉=−𝑎𝐶exp(−𝑎𝑡), ̈𝜉=𝑎2𝐶exp(−𝑎𝑡).

Substituting 𝜉 into the EoM we can simplify and solve for 𝐶:

𝐶(𝑘−𝑎𝑐+2𝑚)exp(−𝑎𝑡)=𝑃exp(−𝑎𝑡) → 𝐶=
𝑃

𝑘−𝑎𝑐+𝑎2𝑚
.

c = 2*z*np.sqrt(k*m)

C = P/(k-a*c+a*a*m)

𝐶=218.68mm

General Integral

𝑥=exp(−𝜁𝜔𝑛𝑡)(𝐴cos(𝜔𝐷𝑡)+𝐵sin(𝜔𝐷𝑡))+𝐶exp(−𝑎𝑡),

𝑥(0)=𝐴+𝐶, 𝑥̇(0)=𝜔𝐷𝐵−𝜁𝜔𝑛𝐴−𝑎𝐶.

wn2 = k/m

wn = np.sqrt(wn2)

wd = wn*np.sqrt(1-z*z)

A+C=x0; wd B - z wn A -a C = v0

A = x0-C; B = (v0 + a*C + z*wn*A)/wd

𝑥(𝑡)=exp(−0.552𝑡)�−0.019cos(27.597𝑡)−0.019sin(27.597𝑡)�−0.019exp(−1.300𝑡)

𝑥̇(𝑡)=exp(−0.552𝑡)�−0.516cos(27.597𝑡)+0.526sin(27.597𝑡)�+0.024exp(−1.300𝑡)

1

Rayleigh Quotient

We need some symbols (sp is an alias for the sympymodule, aka library, that provides symbolic math

to Python)

L, k, mu0, eta, x0, x1, omega = sp.symbols('L k mu_0 eta x_0 x_1 omega')

We write an expression for 𝜇(𝜂) and we integrate it to compute the total mass, 𝑚 = ∫
𝐿

0
𝜇(𝑥)𝑑𝑥 =

𝜇0𝐿∫
1

0
𝜇(𝜂)𝑑𝜂

mu = 2-eta

mass = sp.integrate(mu,(eta, 0, 1))

𝑚=
3

2
𝜇0𝐿

We write the expression for 𝑉max (that’s easy) and the one for 𝑇max, here we start computing the

integral ∫
𝐿

0
𝜇(𝑥)𝑣2(𝑥)𝑑𝑥 = 𝐿∫

1

0
𝜇(𝜂)(𝑥0 + (𝑥1 −𝑥0)𝜂)

2𝑑𝜂 to finally adjust our expression collecting

terms and multiplying by 𝜔2

V = (2*x0**2+3*x1**2)*k/2

temp = sp.integrate(mu*(x0+eta*(x1-x0))**2,(eta,0,1)).expand()*L

T = omega**2*sp.collect(temp,mu0)/2

𝑇max=𝑉max⇒

𝐿𝜔2�
7𝑥20

12
+
𝑥0𝑥1

2
+
5𝑥21

12
�

2
=
𝑘�2𝑥20+3𝑥

2
1�

2
Solving the previous equation we have 𝜔2=𝜔2(𝑥0,𝑥1),

2

w2 = sp.solve(sp.Eq(T,V),omega)[1]**2

𝜔2=
12𝑘�2𝑥20+3𝑥

2
1�

𝐿�7𝑥20+6𝑥0𝑥1+5𝑥
2
1�

Our next step is to remove all dependencies except 𝑥1 and finally plot our function of the single

variable 𝑥1
𝜔2

𝜔2
0

�
𝑥0=1

=
12�3𝑥21+2�

5𝑥21+6𝑥1+7

It’s apparent that the minimum is near the point 𝑥1 = 0.4 but also 𝑥1 = 0.5 should give us a very

good approximation…

𝜔2=
44

15

𝑘

𝜇0𝐿
=2.933333

𝑘

𝜇0𝐿
, for 𝑥0=1, 𝑥1=

1

2

𝜔2=
248

85

𝑘

𝜇0𝐿
=2.917647

𝑘

𝜇0𝐿
, for 𝑥0=1, 𝑥1=0.4

It’s not difficult to find the location of the minimum (and hence the first eigenvector) and the cor-

responding eigenvalue. First we derive𝜔2(𝑥1)with respect to 𝑥1 and find the roots of the numerator

216𝑥21+264𝑥1−144=0

𝑥̂1=−
11

18
+
√337

18
=0.408753

so we have an eigenvector, {1, 𝑥̂1} and substituting 𝑥̂1 in 𝜔(1, 𝑥1) we have the corresponding

eigenvalue

𝜔2(1, 0.408753)=2.917486𝜔2
0

Structural Testing

We can estimate the stiffness and the damping ratio.

The stiffness is easy
3

P = 48*1000; x0 = 12/1000; x4 = 9.81/1000

k = P/x0

𝑘=4000.0kN/m

and the damping ratio is easy too, mind that we don’t need the period of vibration to apply our

formula

𝜁𝑛+1=
log

𝑥0

𝑥4

4⋅2𝜋
�1−𝜁2𝑛.

Here we start with 𝜁0=0 and stop at 𝜁2 because we have a meaningful value.

d = np.log(x0/x4); m = 4

z0 = 0

z1 = d/(2*m*np.pi)*np.sqrt(1-z0**2)

z2 = d/(2*m*np.pi)*np.sqrt(1-z1**2)

𝜁0=0%, 𝜁1=0.801760%, 𝜁2=0.801735%.

Just for fun, we can plot the decrement after 𝑚 cycles, 𝑥𝑚/𝑥0, as a function of 𝜁. On the plot also

a horizontal line for our 𝑥4/𝑥0=0.8175, the intersection with the red curve gives the estimated value

of the damping ratio.

Vibration Isolation & Numerical Integration

Data, TR

m = 18E3; P0 = 1E3; t0 = 6; w0 = 2*np.pi*10; Pmax = 300

z00 = 0.00; z01 = 0.01; z12 = 0.12

4

TR = Pmax/P0

Plot the phase,

the angular velocity, the angular acceleration and the unbalanced load.

In the graph of the angular velocity I have put in evidence the natural frequency of vibration of an

undamped suspension system (dashed line), a horizontal band of angular velocities around such fre-

quency (in red) that are expected to excite the system in near-resonance and a vertical band (in blue)

that highlights the time interval in which this near-resonance excitation is expected to take place.

The same vertical band is drawn on the plot of the unbalanced load and, especially, will be

drawn on the plots of the transmitted force, to highlight the dynamic amplification of the response

corresponding to a load that is just a fraction of the steady state load.

t = np.linspace(0,8,1001)

a = t/t0

phi0 = w0*t0*np.where(t<t0, a**2*(1-a/3), a-1/3)

phi1 = w0*np.where(t<t0, 2*a-a*a, 1)

phi2 = w0*np.where(t<t0, 2-2*a, 0)

P = P0*(phi1**2*np.sin(phi0)-phi2*np.cos(phi0))/w0**2

Design the Suspension System

for the two different values of the damping ratio 𝜁 defined at the beginning of this section.

From
�1+(2𝜁𝛽)2

�(1−𝛽2)2+(2𝜁𝛽)2
=TR

we have

TR2((1−𝛽2)2+(2𝜁𝛽)2)−1−(2𝜁𝛽)2=0

that, expanded, is

TR2𝛽4+((4𝜁2−2)TR2−4𝜁2)𝛽2+TR2−1=0.

5

Substituting TR=0.3 and rearranging we have

9𝛽4−(364𝑧2+18)𝛽2−91=0

whose positive root is

𝛽2=
364𝜁2+�(364𝜁2+18)2+3276

18
+1.

B201 = (364*z01**2 + np.sqrt((364*z01**2 + 18)**2 + 3276)) / 18 + 1

k01 = m * w0**2 / B201

c01 = 2*z01*np.sqrt(m*k01)

B212 = (364*z12**2 + np.sqrt((364*z12**2 + 18)**2 + 3276)) / 18 + 1

k12 = m * w0**2 / B212

c12 = 2*z12*np.sqrt(m*k12)

mass [kg] damper [kN·s/m] spring [MN/m]

z= 0.0% 18000.000 0.000 16.399

z= 1.0% 18000.000 10.863 16.389

z= 12.0% 18000.000 124.896 15.045

Numerical Integration

A function factory

def new_integrator(m,c,k,h):

c0 = 3*c + 6*m/h

m0 = 3*m + c*h/2

k0 = k + 3*c/h + 6*m/h/h

def integrator(x0, v0, p0, p1):

a0 = (p0-c*v0-k*x0)/m

dp = p1 - p0 + a0*m0 + v0*c0

dx = dp/k0

dv = 3*(dx/h-v0)-a0*h/2

return x0+dx, v0+dv

return integrator

Compute the response for 𝜁=1%

Instantiate an integrator

next_xv = new_integrator(m, c01, k01, 8/1000)

Set the initial conditions, x0 = 0, v0 = 0

R01 = [(0, 0)]

for p0, p1 in zip(P, P[1:]):

R01.append(next_xv(*R01[-1], p0, p1))

6

Notice how much the transmitted force has been amplified during the near-resonance interval,

notice also that the response, well after this interval, has still a dominant frequency component

corresponding to the natural frequency of vibration of the suspended mass, that superposed to the

steady-state component of the response leads to a large value of the transmitted force.

Compute the response for 𝜁=12%

next_xv = new_integrator(m, c12, k12, 8/1000)

R12 = [(0, 0)]

for p0, p1 in zip(P, P[1:]):

R12.append(next_xv(*R12[-1], p0, p1))

With a largish value of the damping ratio we have a controlled response during the near-resonant

excitation interval and the transient response is quickly damped out, leading in a short time to a trans-

mitted force that has exactly (numerical integration works, doesn’t it?) the target amplitude of 300N.

Initialization Cells

7

import numpy as np

import sympy as sp

import matplotlib.pyplot as plt

from matplotlib import rc_context

from IPython.display import Math, Latex

sp.init_printing(use_latex=True)

<IPython.core.display.HTML object>

8

	Initial Conditions
	Data
	Particular Integral
	General Integral

	Rayleigh Quotient
	Structural Testing
	Vibration Isolation & Numerical Integration
	Data, TR
	Plot the phase,
	Design the Suspension System
	Numerical Integration
	A function factory
	Compute the response

	Initialization Cells

