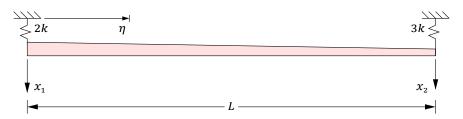
Homework

To have your homework corrected, please hand it on Thursday, March 21st.


1 Initial Conditions

A single degree of freedom system has mass m = 42 kg, stiffness k = 32 kN m⁻¹ and damping ratio $\zeta = 2.7$ %.

At t = 0 the system is not in equilibrium, with $x_0 = 200$ mm and $\dot{x}_0 = -800$ mm s⁻¹, and is loaded by a dynamic load $P(t) = P_0 \exp(-at)$ with $P_0 = 700$ N and a = 1.3 s⁻¹.

- 1. Write the expression of the system response, x(t) for $t \ge 0$.
- 2. Write the first time derivative of the response, $\dot{x}(t)$.
- 3. Plot the deflections of the system in the time interval $0 \le t < 2$ s as well as the static deflections, i.e., P(t)/k.

2 Rayleigh Quotient

The system in figure is composed of a rigid bar and two springs. The rigid bar is non uniform, its unit mass $\mu(\eta) = (2 - \eta)\mu_0$, where $0 \le \eta \le 1$ is a non-dimensional coordinate.

- 1. Verify that the total mass of the bar is $3/2\mu_0 L$.
- 2. Using the free coordinates shown in figure (or $x \equiv x_1$, $\delta = x_2 x_1$) compute an approximate value of the smallest eigenvalue of the system.

3 Structural Testing

A structure that can be analyzed as a SDOF system was subjected to a static load, P = 48 kN, the resulting static displacement being $x_0 = 12$ mm. The load was suddenly removed and the successive maxima of the free vibrations response were recorded: $x_1 = 11.41$ mm, $x_2 = 10.85$ mm, $x_3 = 10.32$ mm and $x_4 = 9.81$ mm, but due to an error the times of occurrence of the maxima were not recorded.

Which structural parameters can you derive from these results? What are their values?

4 Vibration Isolation

A machine, its mass M = 18000 kg, when it is operated starting from rest transmits to its rigid supports an unbalanced force

$$p(t) = \frac{p_0}{\omega_0^2} \left(\dot{\phi}^2(t) \sin \phi(t) - \ddot{\phi}(t) \cos \phi(t) \right)$$

where ϕ is the phase angle describing the unbalanced mass position, with

$$\phi(t) = \omega_0 t_0 \begin{cases} \left(\frac{t}{t_0}\right)^2 - \frac{1}{3} \left(\frac{t}{t_0}\right)^3 & 0 \le t \le t_0 \\ \frac{t}{t_0} - \frac{1}{3} & t > t_0 \end{cases}$$

where $p_0 = 1000$ N, $t_0 = 6$ s and $\omega_0 = 2\pi \times 10$ rad s⁻¹.

- 1. Plot the phase angle $\phi(t)$, the angular velocity $\dot{\phi}(t)$, the angular acceleration $\ddot{\phi}(t)$ and the unbalanced force p(t) in the time interval $0 \le t \le 8$ s.
- 2. Design two suspension systems, with the two assigned values of the damping ratio: $\zeta_1 = 0.01$ and $\zeta_2 = 0.12$, so that the transmitted force at steady-state is $f_{\text{s-s}} \leq 300 \text{ N}$.
- 3. Using the Linear Acceleration algorithm, with a time step h = 8 ms, determine the peak values of the instantaneous force f(t) transmitted to the support during the transient, plot the transmitted force in the interval $0 \le t \le 10$ s and discuss your results.