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1 Free Response
A1 storey building can be considered a SDOF system. Its top is displaced bymeans
of a hydraulic jack, the applied force is 90kN, and the measured displacement is
𝑥0 = 5.0mm.

The applied force is istantaneously released, so that the building oscillates in
free response, starting from initial conditions 𝑥(0) = 𝑥0, �̇�(0) = 0. Note that 𝑥0
is a maximum, as the velocity at time 𝑡 = 0 is equal to zero.

Themaximumdisplacement after the irst cycle of oscillation is measured, and
it is found that 𝑥1 = 4.0mm, at time 𝑡 = 1.40s.

We want to determine the dynamical parameters of the system, and in partic‑
ular its damping ratio.

1.1 Determination of the Dynamical Parameters
First, we can derive the elastic stiffness relating the applied force and the initial
displacement,

𝑘 = 𝐹
𝑥0

= 90, 000N
0.005m = 18.0MN

m .

Next, with the understanding that the damped period is 𝑇𝐷 = 1.4s, we ind the
damped frequency,

𝜔𝐷 = 2𝜋
𝑇𝐷

= 6.2832rad
1.40s = 4.488r𝑎𝑑s .

The logarithmic decrement equation, when written for two consecutive max‑
ima of the response, is

log( 𝑥𝑛
𝑥𝑛+1

) = 𝛿 = 2𝜋𝜁
1 − 𝛽2

.

Solving for 𝜁 and substituting 𝛿 = log 1.25 gives

𝜁 = 𝛿
(2𝜋)2 + 𝛿2

= 3.54920237062%.
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𝑖 𝜔𝑖 (rad/s) 𝜌𝑖 (𝜇m) 𝜗𝑖 (deg) cos𝜗𝑖 sin𝜗
1 16.0 183. 15.0 0.966 0.259
2 25.0 368. 55.0 0.574 0.819

Table 1: Experimental data

As an alternative, one can use an iterative solution, starting with 𝜁0 = 0 and
writing

𝜁𝑖+1 =
𝛿
2𝜋 1 − 𝜁2𝑖 .

Using this procedure, the successive approximations are

𝜁1 =3.55143992107%
𝜁2 =3.54919954758%
𝜁3 =3.54920237420%
𝜁4 =3.54920237064%

Of course, from an engineering point of view the result 𝜁1 = 3.55% is good enough.

2 Dynamic Testing
We want to measure the dynamical characteristics of a SDOF building system, i.e.,
its mass, its damping coef icient and its elastic stiffness.

To this purpose, we demonstrate that is suf icient to measure the steady‑state
response of the SDOF when subjected to a number of harmonic excitations with
different frequencies.

The steady‑state response is characterized by its amplitude,𝜌 and the phase
delay, 𝜗, as in 𝑥S𝑆(𝑡) = 𝜌 sin(𝜔𝑡 − 𝜗).

E.g., weexcite our stucturewith avibrodyne that exerts aharmonic force𝑝(𝑡) =
𝑝0 sin𝜔𝑡, with 𝑝0 = 2.224kN, and measure the steady‑state response parameters
for two different input frequencies, as detailed in table 1.

2.1 Determination of the Dynamical Parameters
We start from the equation for steady‑state response amplitude,

𝜌 = 𝑝0
𝑘

1
(1 − 𝛽2)2 + (2𝜁𝛽)2

where we collect (1 − 𝛽2)2 in the radicand in the right member,

𝜌 = 𝑝0
𝑘

1
1 − 𝛽2

1
1 + [2𝜁𝛽/(1 − 𝛽2)]2
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Figure 1: vertical pro ile of bridge surface

but the equation for the phase angle, tan𝜗 = 2𝜁𝛽
1−𝛽2 , can be substituted in the radi‑

cand, so that, using simple trigonometric identities, we ind that

𝜌 = 𝑝0
𝑘

1
1 − 𝛽2

1
1 + tan2 𝜗

= 𝑝0
𝑘

cos𝜗
1 − 𝛽2 .

With 𝑘(1−𝛽2) = 𝑘−𝑘 𝜔2

𝑘/𝑚 = 𝑘−𝜔2𝑚 and using a simple rearrangement, we
have

𝑘 − 𝜔2𝑚 = 𝑝0
𝜌 cos𝜗.

Substituting the data from table 1 into the previous equation for 𝑖 = 1, 2we can
write, using matrix notation, a system of two algebraic equations in the unknown
𝑘 and𝑚,

1 −162
1 −252

𝑘
𝑚 = 𝑝0

0.966
183×10−60.574
368×10−6

,

that once solved gives us the values 𝑘 = 17.48MN/m and 𝑚 = 22415 kg, while
the natural frequency is 𝜔 = 𝑘/𝑚 = 27.924rad/s.

Using the previously established relationship for cos𝜗, we can write cos𝜗 =
𝑘(1−𝛽2) 𝜌

𝑝0
, from the equationof thephase angle (see above),we canwrite cos𝜗 =

1−𝛽2
2𝜁𝛽 sin𝜗, and inally

𝜌𝑘
𝑝0

= sin𝜗
2𝜁𝛽 , hence 𝜁 = 𝑝0

𝜌𝑘
sin𝜗
2𝛽 ,

and substituting the values for, e,g„ 𝑖 = 1 gives 𝜁 = 15.7%. Substituting the values
for 𝑖 = 2 offers a result that is equivalent from an engineering point of view.

3 Vibration Insulation, Displacements
A vehicle with mass 𝑚 = 1800kg travels at constant velocity 𝑣 = 72km/h over
a very long bridge; the bridge has a constant span 𝐿 = 12m and, due to viscous
displacements, its surface is nomore horizontal (see igure 1). The vertical pro ile
of the bridge surface can be approximated by a trigonometric function,

𝑦𝑔 = 𝑦𝑔0 cos(
2𝜋𝑥
𝐿 ),

3



m

k c

Figure 2: simpli ied model of the vehicle

where 𝑦𝑔0 =
𝛿max
2 = 3.0cm, 𝛿 = 6.0cm being the maximum de lection measured

between the supports and the midspan.
The vehicle can be considered as a single mass, connected to the road surface

by a suspension system composed by a spring and a viscous damper . The stiffness
is 𝑘 = 225kN/m, and the damping ratio is 𝜁 = 40%.

It is required the maximum value of the total vertical displacement of the ve‑
hicle body at steady state.

3.1 Determination of the total steady state displacement
The point of contact between the suspension and the road, assuming a constant
vehicle velocity, goes up and down with a period 𝑇 that is equal to the time that
the vehicle uses to go from one maximum to the successive maximum, that is the
time it takes to travel 𝐿 = 12m.

The vehicle velocity is

𝑣 = 72000m
3600s = 20m/s,

and the excitation period is hence

𝑇 = 12m
20m/s = 0.6s.

The natural period of excitation of the suspension‑vehicle system is

𝑇𝑛 =
2𝜋
𝜔𝑛

= 2𝜋
𝑘/𝑚

= 0.562s

and the excitation frequency ratio is

𝛽 = 𝑇𝑛
𝑇 = 0.9366

.
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The transmittance ratio, 𝑇𝑅, is de ined as

𝑇𝑅 = 𝑦TOT
𝑦𝑔0

= 1 + (2𝜁𝛽)2
(1 − 𝛽2)2 + (2𝜁𝛽)2 = 1.647,

so that the maximum displacement is
𝑦TOT = 1.647 × 3.0cm = 4.9371cm.

For 𝜁 = 0.0, 𝑇𝑅 is equal to?

4 Vibration Insulation, Transmitted Forces.
A rotating machine has a total mass 𝑚 = 90, 000kg; when it is in operation the
machine transmits to its rigid support a harmonic force

𝑝(𝑡) = 𝑝0 sin(2𝜋𝑓0𝑡), with 𝑝0 = 2kN and 𝑓0 = 40Hz.
Due to the excessive level of vibrations induced in the building in which the

machine is housed, it is required that the transmitted force is reduced to a maxi‑
mum value of 400N. This will be achieved by means of a suspension system that
will consist of four equal springs of elastic constant 𝑘.

4.1 Maximum stiffness of the damping system
In this case the required maximum value of the transmissibility ratio is

𝑇𝑅 = 𝑓𝑇
𝑝𝑜

= 400N
2000N = 0.20,

and the required insulation ef iciency is
𝐼𝐸 = 1 − 𝑇𝑅 = 0.80

From the design chart in igure 3, for an excitation frequency of 40Hz and 𝐼𝐸 =
0.80, we see the following requirement for the static displacement,

Δstatic = 𝑊/𝑘total ≥ 0.095cm = 0.00095m.
Solving for 𝑘 = 𝑘total/4,

𝑘 ≤ 90, 000 × 9.81
4 × 0.00095 N/m = 232.34MN/m.

Using a different approach, for an undamped system one can write

𝑇𝑅 = 1
𝛽2 − 1, hence 𝛽 = 1 + 𝑇𝑅

𝑇𝑅 = 2.45

deriving 𝜔𝑛 = (2𝜋𝑓0)/2.0 = 102.64rad/s, and

𝑘 = 𝑘total
4 = 1

4𝑚𝜔
2
𝑛 =

90, 000 × 10, 527.6
4 = 236.87MN

m
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Figure 3: IE design chart
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