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Response of an Undamped Oscillator
to Harmonic Load
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The Equation of Motion

The SDOF equation of motion for a harmonic loading is:

𝑚 �̈� + 𝑘 𝑥 = 𝑝0 sin𝜔𝑡.
The solution can be written, using superposition, as the free vibration solution plus
a particular solution, 𝜉 = 𝜉(𝑡)

𝑥(𝑡) = 𝐴 sin𝜔𝑛𝑡 + 𝐵 cos𝜔𝑛𝑡 + 𝜉(𝑡)
where 𝜉(𝑡) satisfies the equation of motion,

𝑚 ̈𝜉 + 𝑘 𝜉 = 𝑝0 sin𝜔𝑡.
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The Equation of Motion

A particular solution can be written in terms of a harmonic function with the same
circular frequency of the excitation,𝜔,

𝜉(𝑡) = 𝐶 sin𝜔𝑡
whose second time derivative is

̈𝜉(𝑡) = −𝜔2 𝐶 sin𝜔𝑡.
Substituting 𝑥 and its derivative with 𝜉 and simplifying the time dependency we get

𝐶 (𝑘 − 𝜔2𝑚) = 𝑝0,

collecting 𝑘 and introducing the frequency ratio 𝛽 = 𝜔/𝜔𝑛

𝐶 𝑘(1 − 𝜔2𝑚/𝑘) = 𝐶 𝑘(1 − 𝜔2/𝜔2
n ) = 𝐶 𝑘 (1 − 𝛽2) = 𝑝0.
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The Particular Integral

Starting from our last equation, 𝐶 (𝑘 −𝜔2𝑚) = 𝐶 𝑘 (1−𝛽2) = 𝑝0, and solving for 𝐶 we get

𝐶 = 𝑝0
𝑘 − 𝜔2𝑚 = 𝑝0

𝑘
1

1 − 𝛽2 .

We can now write the particular solution, with the dependencies on 𝛽 singled out in the
second factor:

𝜉(𝑡) = 𝑝0
𝑘

1
1 − 𝛽2 sin𝜔𝑡.

The general integral for 𝑝(𝑡) = 𝑝0 sin𝜔𝑡 is hence

𝑥(𝑡) = 𝐴 sin𝜔n𝑡 + 𝐵 cos𝜔n𝑡 +
𝑝0
𝑘

1
1 − 𝛽2 sin𝜔𝑡.
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The Particular Integral

Starting from our last equation, 𝐶 (𝑘 −𝜔2𝑚) = 𝐶 𝑘 (1−𝛽2) = 𝑝0, and solving for 𝐶 we get

𝐶 = 𝑝0
𝑘 − 𝜔2𝑚 = 𝑝0

𝑘
1

1 − 𝛽2 .

We can now write the particular solution, with the dependencies on 𝛽 singled out in the
second factor:

𝜉(𝑡) = 𝑝0
𝑘

1
1 − 𝛽2 sin𝜔𝑡.

The general integral for 𝑝(𝑡) = 𝑝0 sin𝜔𝑡 is hence

𝑥(𝑡) = 𝐴 sin𝜔n𝑡 + 𝐵 cos𝜔n𝑡 +
𝑝0
𝑘

1
1 − 𝛽2 sin𝜔𝑡.
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The Particular Integral

Starting from our last equation, 𝐶 (𝑘 −𝜔2𝑚) = 𝐶 𝑘 (1−𝛽2) = 𝑝0, and solving for 𝐶 we get

𝐶 = 𝑝0
𝑘 − 𝜔2𝑚 = 𝑝0

𝑘
1

1 − 𝛽2 .

We can now write the particular solution, with the dependencies on 𝛽 singled out in the
second factor:

𝜉(𝑡) = 𝑝0
𝑘

1
1 − 𝛽2 sin𝜔𝑡.

The general integral for 𝑝(𝑡) = 𝑝0 sin𝜔𝑡 is hence

𝑥(𝑡) = 𝐴 sin𝜔n𝑡 + 𝐵 cos𝜔n𝑡 +
𝑝0
𝑘

1
1 − 𝛽2 sin𝜔𝑡.
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Response Ratio and Dynamic Amplification Factor

Introducing the static deformation, Δst = 𝑝0/𝑘, and the Response Ratio, 𝑅(𝑡; 𝛽) the
particular integral is

𝜉(𝑡) = Δst 𝑅(𝑡; 𝛽).
The Response Ratio is eventually expressed in terms of the dynamic amplification
factor 𝐷(𝛽) = (1 − 𝛽2)−1 as follows:

𝑅(𝑡; 𝛽) = 1
1 − 𝛽2 sin𝜔𝑡 = 𝐷(𝛽) sin𝜔𝑡.

The dependency of 𝐷 on 𝛽 is examined in the next slide.
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Dynamic Amplification Factor, the plot
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𝐷(𝛽) is stationary and almost equal to 1when𝜔 << 𝜔n (this is a quasi‐static behaviour), it
grows out of bound when 𝛽 ⇒ 1 (resonance), it is negative for 𝛽 > 1 and goes to 0when
𝜔 >> 𝜔n (high‐frequency loading).
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Response from Rest Conditions

Starting from rest conditions means that 𝑥(0) = 0 and �̇�(0) = 0.

Let’s start with
𝑥(𝑡), then evaluate 𝑥(0) and finally equate this last expression to 0:

𝑥(𝑡) = 𝐴 sin𝜔n𝑡 + 𝐵 cos𝜔n𝑡 + Δst 𝐷(𝛽) sin𝜔𝑡,
𝑥(0) = 𝐴 × 0 + 𝐵 × 1 + Δst 𝐷(𝛽) × 0 = 𝐵 = 0.

We do as above for the velocity:

�̇�(𝑡) = 𝜔n (𝐴 cos𝜔n𝑡 − 𝐵 sin𝜔n𝑡) + Δst 𝐷(𝛽)𝜔 cos𝜔𝑡,
�̇�(0) = 𝜔n 𝐴 + 𝜔Δst 𝐷(𝛽) = 0 ⇒

⇒ 𝐴 = −Δst
𝜔
𝜔n

𝐷(𝛽) = −Δst 𝛽𝐷(𝛽)

Substituting 𝐴 and 𝐵 in 𝑥(𝑡) above, collecting Δst and 𝐷(𝛽)we have, for
𝑝(𝑡) = 𝑝0 sin𝜔𝑡, the response from rest:

𝑥(𝑡) = Δst 𝐷(𝛽) (sin𝜔𝑡 − 𝛽 sin𝜔n𝑡) .
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Response from Rest Conditions

Starting from rest conditions means that 𝑥(0) = 0 and �̇�(0) = 0. Let’s start with
𝑥(𝑡), then evaluate 𝑥(0) and finally equate this last expression to 0:

𝑥(𝑡) = 𝐴 sin𝜔n𝑡 + 𝐵 cos𝜔n𝑡 + Δst 𝐷(𝛽) sin𝜔𝑡,
𝑥(0) = 𝐴 × 0 + 𝐵 × 1 + Δst 𝐷(𝛽) × 0 = 𝐵 = 0.

We do as above for the velocity:

�̇�(𝑡) = 𝜔n (𝐴 cos𝜔n𝑡 − 𝐵 sin𝜔n𝑡) + Δst 𝐷(𝛽)𝜔 cos𝜔𝑡,
�̇�(0) = 𝜔n 𝐴 + 𝜔Δst 𝐷(𝛽) = 0 ⇒

⇒ 𝐴 = −Δst
𝜔
𝜔n

𝐷(𝛽) = −Δst 𝛽𝐷(𝛽)

Substituting 𝐴 and 𝐵 in 𝑥(𝑡) above, collecting Δst and 𝐷(𝛽)we have, for
𝑝(𝑡) = 𝑝0 sin𝜔𝑡, the response from rest:

𝑥(𝑡) = Δst 𝐷(𝛽) (sin𝜔𝑡 − 𝛽 sin𝜔n𝑡) .
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Response from Rest Conditions

Starting from rest conditions means that 𝑥(0) = 0 and �̇�(0) = 0. Let’s start with
𝑥(𝑡), then evaluate 𝑥(0) and finally equate this last expression to 0:

𝑥(𝑡) = 𝐴 sin𝜔n𝑡 + 𝐵 cos𝜔n𝑡 + Δst 𝐷(𝛽) sin𝜔𝑡,
𝑥(0) = 𝐴 × 0 + 𝐵 × 1 + Δst 𝐷(𝛽) × 0 = 𝐵 = 0.

We do as above for the velocity:

�̇�(𝑡) = 𝜔n (𝐴 cos𝜔n𝑡 − 𝐵 sin𝜔n𝑡) + Δst 𝐷(𝛽)𝜔 cos𝜔𝑡,
�̇�(0) = 𝜔n 𝐴 + 𝜔Δst 𝐷(𝛽) = 0 ⇒

⇒ 𝐴 = −Δst
𝜔
𝜔n

𝐷(𝛽) = −Δst 𝛽𝐷(𝛽)

Substituting 𝐴 and 𝐵 in 𝑥(𝑡) above, collecting Δst and 𝐷(𝛽)we have, for
𝑝(𝑡) = 𝑝0 sin𝜔𝑡, the response from rest:

𝑥(𝑡) = Δst 𝐷(𝛽) (sin𝜔𝑡 − 𝛽 sin𝜔n𝑡) .
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Response from Rest Conditions

Starting from rest conditions means that 𝑥(0) = 0 and �̇�(0) = 0. Let’s start with
𝑥(𝑡), then evaluate 𝑥(0) and finally equate this last expression to 0:

𝑥(𝑡) = 𝐴 sin𝜔n𝑡 + 𝐵 cos𝜔n𝑡 + Δst 𝐷(𝛽) sin𝜔𝑡,
𝑥(0) = 𝐴 × 0 + 𝐵 × 1 + Δst 𝐷(𝛽) × 0 = 𝐵 = 0.

We do as above for the velocity:

�̇�(𝑡) = 𝜔n (𝐴 cos𝜔n𝑡 − 𝐵 sin𝜔n𝑡) + Δst 𝐷(𝛽)𝜔 cos𝜔𝑡,
�̇�(0) = 𝜔n 𝐴 + 𝜔Δst 𝐷(𝛽) = 0 ⇒

⇒ 𝐴 = −Δst
𝜔
𝜔n

𝐷(𝛽) = −Δst 𝛽𝐷(𝛽)

Substituting 𝐴 and 𝐵 in 𝑥(𝑡) above, collecting Δst and 𝐷(𝛽)we have, for
𝑝(𝑡) = 𝑝0 sin𝜔𝑡, the response from rest:

𝑥(𝑡) = Δst 𝐷(𝛽) (sin𝜔𝑡 − 𝛽 sin𝜔n𝑡) .



SDoF Linear
Oscillator

Giacomo Boffi

Undamped
Response
EOM Undamped

The Particular Integral

Dynamic
Amplification

Response from Rest

Resonant Response

Response from Rest Conditions, cont.

Is it different when the load is 𝑝(𝑡) = 𝑝0 cos𝜔𝑡?
You can easily show that, similar to the previous case,

𝑥(𝑡) = 𝑥(𝑡) = 𝐴 sin𝜔n𝑡 + 𝐵 cos𝜔n𝑡 + Δst 𝐷(𝛽) cos𝜔𝑡
and, for a system starting from rest, the initial conditions are

𝑥(0) = 𝐵 + Δst 𝐷(𝛽) = 0
�̇�(0) = 𝐴 = 0

giving 𝐴 = 0, 𝐵 = −Δst 𝐷(𝛽) that substituted in the general integral lead to

𝑥(𝑡) = Δst 𝐷(𝛽) (cos𝜔𝑡 − cos𝜔n𝑡) .
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Resonant Response from Rest Conditions

We have seen that the response to harmonic loading with zero initial conditions is

𝑥(𝑡; 𝛽) = Δst
sin𝜔𝑡 − 𝛽 sin𝜔n𝑡

1 − 𝛽2

and we know that for𝜔 = 𝜔𝑛 (i.e., 𝛽 = 1) the dynamic amplification factor is
infinite, but what is really happening when we have the so‐called resonant
response?

The response will reach (theoretically...) an infinite amplitude but only after an infinite time,
because the rate at which we can introduce energy into the system is obviously limited.
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Resonant Response from Rest Conditions

We have seen that the response to harmonic loading with zero initial conditions is

𝑥(𝑡; 𝛽) = Δst
sin𝜔𝑡 − 𝛽 sin𝜔n𝑡

1 − 𝛽2

and we know that for𝜔 = 𝜔𝑛 (i.e., 𝛽 = 1) the dynamic amplification factor is
infinite, but what is really happening when we have the so‐called resonant
response?

The response will reach (theoretically...) an infinite amplitude but only after an infinite time,
because the rate at which we can introduce energy into the system is obviously limited.
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Resonant Response from Rest Conditions

𝑥(𝑡; 𝛽)
Δst

= sin𝛽𝜔n𝑡 − 𝛽 sin𝜔n𝑡
1 − 𝛽2 .

In the above expression, when 𝛽 = 1 the denominator equals zero but also the
numerator equals zero: we are facing an indeterminate expression...

To determine the resonant response we will use the rule of de l’Hôpital that states
that, in the limit, the value of a 0/0 expression equals the ratio of the derivatives of
the numerator and the denominator with respect to the free parameter, here 𝛽.
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Resonant Response from Rest Conditions

𝑥(𝑡; 𝛽)
Δst

= sin𝛽𝜔n𝑡 − 𝛽 sin𝜔n𝑡
1 − 𝛽2 .

In the above expression, when 𝛽 = 1 the denominator equals zero but also the
numerator equals zero: we are facing an indeterminate expression...

To determine the resonant response we will use the rule of de l’Hôpital that states
that, in the limit, the value of a 0/0 expression equals the ratio of the derivatives of
the numerator and the denominator with respect to the free parameter, here 𝛽.
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Resonant Response from Rest Conditions

𝑥(𝑡; 𝛽)
Δst

= sin𝛽𝜔n𝑡 − 𝛽 sin𝜔n𝑡
1 − 𝛽2 .

In the above expression, when 𝛽 = 1 the denominator equals zero but also the
numerator equals zero: we are facing an indeterminate expression...

To determine the resonant response we will use the rule of de l’Hôpital that states
that, in the limit, the value of a 0/0 expression equals the ratio of the derivatives of
the numerator and the denominator with respect to the free parameter, here 𝛽.
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Resonant Response from Rest Conditions, cont.

First, we substitute 𝛽𝜔n for𝜔, next we compute the two derivatives and finally we
substitute𝜔n by𝜔 (that can be done because 𝛽 = 1):

lim
𝛽→1

𝑥(𝑡; 𝛽) = lim
𝛽→1

Δst
𝜕(sin𝛽𝜔n𝑡 − 𝛽 sin𝜔n𝑡)/𝜕𝛽

𝜕(1 − 𝛽2)/𝜕𝛽

= Δst
2 (sin𝜔𝑡 − 𝜔𝑡 cos𝜔𝑡) .

As you can see, there is a term in quadrature with the loading, whose amplitude
grows linearly and without bounds.
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Resonant Response from Rest Conditions, cont.

First, we substitute 𝛽𝜔n for𝜔, next we compute the two derivatives and finally we
substitute𝜔n by𝜔 (that can be done because 𝛽 = 1):

lim
𝛽→1

𝑥(𝑡; 𝛽) = lim
𝛽→1

Δst
𝜕(sin𝛽𝜔n𝑡 − 𝛽 sin𝜔n𝑡)/𝜕𝛽

𝜕(1 − 𝛽2)/𝜕𝛽

= Δst
2 (sin𝜔𝑡 − 𝜔𝑡 cos𝜔𝑡) .

As you can see, there is a term in quadrature with the loading, whose amplitude
grows linearly and without bounds.
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Resonant Response, the plot

2
Δst

𝑥(𝑡) = sin𝜔𝑡 −𝜔𝑡 cos𝜔𝑡.
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The amplitude𝒜 of the normalized
envelope is

𝒜 = 1 + (𝜔𝑡)2

because the two components of the
response are in quadrature.

When𝜔𝑡 → ∞we have that𝒜 → 𝜔𝑡.
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Homework

Derive the expression for the resonant response when 𝑝(𝑡) = 𝑝0 cos𝜔𝑡,

lim
𝛽→1

𝑥(𝑡) = lim
𝛽→1

Δst 𝐷(𝛽) (cos𝜔𝑡 − cos𝜔n𝑡) .
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Part II

Response of the Damped Oscillator to
Harmonic Loading



SDoF Linear
Oscillator

Giacomo Boffi

Damped
Response
EOM Damped

Particular Integral

Stationary Response

Phase Angle

Dynamic
Magnification

Exponential Load

Accelerometer,
etc
The Accelerometer

Measuring
Displacements

The Equation of Motion for a Damped Oscillator

The SDOF equation of motion for a harmonic loading is:

𝑚 �̈� + 𝑐 �̇� + 𝑘 𝑥 = 𝑝0 sin𝜔𝑡.

A particular solution to this equation is a harmonic function not in phase with the
input: 𝑥(𝑡) = 𝐺 sin(𝜔𝑡 − 𝜃);

it is however equivalent and convenient to write :

𝜉(𝑡) = 𝐺1 sin𝜔𝑡 + 𝐺2 cos𝜔𝑡,

where we have simply a different formulation, no more in terms of amplitude and
phase but in terms of the amplitudes of two harmonics in quadrature, as in any
case the particular integral depends on two free parameters.
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The Equation of Motion for a Damped Oscillator

The SDOF equation of motion for a harmonic loading is:

𝑚 �̈� + 𝑐 �̇� + 𝑘 𝑥 = 𝑝0 sin𝜔𝑡.

A particular solution to this equation is a harmonic function not in phase with the
input: 𝑥(𝑡) = 𝐺 sin(𝜔𝑡 − 𝜃); it is however equivalent and convenient to write :

𝜉(𝑡) = 𝐺1 sin𝜔𝑡 + 𝐺2 cos𝜔𝑡,

where we have simply a different formulation, no more in terms of amplitude and
phase but in terms of the amplitudes of two harmonics in quadrature, as in any
case the particular integral depends on two free parameters.
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The Equation of Motion for a Damped Oscillator

The SDOF equation of motion for a harmonic loading is:

𝑚 �̈� + 𝑐 �̇� + 𝑘 𝑥 = 𝑝0 sin𝜔𝑡.

A particular solution to this equation is a harmonic function not in phase with the
input: 𝑥(𝑡) = 𝐺 sin(𝜔𝑡 − 𝜃); it is however equivalent and convenient to write :

𝜉(𝑡) = 𝐺1 sin𝜔𝑡 + 𝐺2 cos𝜔𝑡,

where we have simply a different formulation, no more in terms of amplitude and
phase but in terms of the amplitudes of two harmonics in quadrature, as in any
case the particular integral depends on two free parameters.
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The Particular Integral

Substituting 𝑥(𝑡)with 𝜉(𝑡), dividing by𝑚 it is

̈𝜉(𝑡) + 2𝜁𝜔n ̇𝜉(𝑡) + 𝜔2
n𝜉(𝑡) =

𝑝0
𝑘
𝑘
𝑚 sin𝜔𝑡,

Substituting the most general expressions for the particular integral and its time
derivatives

𝜉(𝑡) = 𝐺1 sin𝜔𝑡 + 𝐺2 cos𝜔𝑡,
�̇�(𝑡) = 𝜔 (𝐺1 𝑐𝑜𝑠𝜔𝑡 − 𝐺2 sin𝜔𝑡),
�̈�(𝑡) = −𝜔2 (𝐺1 sin𝜔𝑡 + 𝐺2 cos𝜔𝑡).

in the above equation it is

−𝜔2 (𝐺1 sin𝜔𝑡 + 𝐺2 cos𝜔𝑡) + 2𝜁𝜔n𝜔 (𝐺1 𝑐𝑜𝑠𝜔𝑡 − 𝐺2 sin𝜔𝑡)+
+𝜔2

n(𝐺1 sin𝜔𝑡 + 𝐺2 cos𝜔𝑡) = Δst𝜔2
n sin𝜔𝑡
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The particular integral, 2

Dividing our last equation by𝜔2
n and collecting sin𝜔𝑡 and cos𝜔𝑡 we obtain

(𝐺1(1 − 𝛽2) − 𝐺22𝛽𝜁) sin𝜔𝑡 + (𝐺12𝛽𝜁 + 𝐺2(1 − 𝛽2)) cos𝜔𝑡 = Δst sin𝜔𝑡 + 0 cos𝜔𝑡.

Equating the coefficients of the sin and the cosine on both sides, we obtain a linear system of two
equations in 𝐺1 and 𝐺2:

𝐺1(1 − 𝛽2) − 𝐺22𝜁𝛽 = Δst .
𝐺12𝜁𝛽 + 𝐺2(1 − 𝛽2) = 0. → (1 − 𝛽2) −2𝜁𝛽

2𝜁𝛽 (1 − 𝛽2)
𝐺1
𝐺2 = Δst

0 .

The determinant of the linear system is

det = (1 − 𝛽2)2 + (2𝜁𝛽)2 ,
the solution of the linear system is

𝐺1 = +Δst
(1 − 𝛽2)

det
, 𝐺2 = −Δst

2𝜁𝛽
det

and the particular integral is

𝜉(𝑡) = Δst

det
(1 − 𝛽2) sin𝜔𝑡 − 2𝛽𝜁 cos𝜔𝑡 .
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The particular integral, 2

Dividing our last equation by𝜔2
n and collecting sin𝜔𝑡 and cos𝜔𝑡 we obtain

(𝐺1(1 − 𝛽2) − 𝐺22𝛽𝜁) sin𝜔𝑡 + (𝐺12𝛽𝜁 + 𝐺2(1 − 𝛽2)) cos𝜔𝑡 = Δst sin𝜔𝑡 + 0 cos𝜔𝑡.
Equating the coefficients of the sin and the cosine on both sides, we obtain a linear system of two
equations in 𝐺1 and 𝐺2:

𝐺1(1 − 𝛽2) − 𝐺22𝜁𝛽 = Δst .
𝐺12𝜁𝛽 + 𝐺2(1 − 𝛽2) = 0. → (1 − 𝛽2) −2𝜁𝛽

2𝜁𝛽 (1 − 𝛽2)
𝐺1
𝐺2 = Δst

0 .

The determinant of the linear system is

det = (1 − 𝛽2)2 + (2𝜁𝛽)2 ,
the solution of the linear system is

𝐺1 = +Δst
(1 − 𝛽2)

det
, 𝐺2 = −Δst

2𝜁𝛽
det

and the particular integral is

𝜉(𝑡) = Δst

det
(1 − 𝛽2) sin𝜔𝑡 − 2𝛽𝜁 cos𝜔𝑡 .
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The particular integral, 2

Dividing our last equation by𝜔2
n and collecting sin𝜔𝑡 and cos𝜔𝑡 we obtain

(𝐺1(1 − 𝛽2) − 𝐺22𝛽𝜁) sin𝜔𝑡 + (𝐺12𝛽𝜁 + 𝐺2(1 − 𝛽2)) cos𝜔𝑡 = Δst sin𝜔𝑡 + 0 cos𝜔𝑡.
Equating the coefficients of the sin and the cosine on both sides, we obtain a linear system of two
equations in 𝐺1 and 𝐺2:

𝐺1(1 − 𝛽2) − 𝐺22𝜁𝛽 = Δst .
𝐺12𝜁𝛽 + 𝐺2(1 − 𝛽2) = 0. → (1 − 𝛽2) −2𝜁𝛽

2𝜁𝛽 (1 − 𝛽2)
𝐺1
𝐺2 = Δst

0 .

The determinant of the linear system is

det = (1 − 𝛽2)2 + (2𝜁𝛽)2 ,
the solution of the linear system is

𝐺1 = +Δst
(1 − 𝛽2)

det
, 𝐺2 = −Δst

2𝜁𝛽
det

and the particular integral is

𝜉(𝑡) = Δst

det
(1 − 𝛽2) sin𝜔𝑡 − 2𝛽𝜁 cos𝜔𝑡 .
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The Particular Integral, 3

Substituting 𝐺1 and 𝐺2 in our expression of the particular integral it is

𝜉(𝑡) = Δst
det

((1 − 𝛽2) sin𝜔𝑡 − 2𝛽𝜁 cos𝜔𝑡) .

The general integral for 𝑝(𝑡) = 𝑝0 sin𝜔𝑡 is hence

𝑥(𝑡) = exp(−𝜁𝜔n𝑡) (𝐴 𝑠𝑖𝑛𝜔D𝑡 + 𝐵 cos𝜔D𝑡) + Δst
(1 − 𝛽2) sin𝜔𝑡 − 2𝛽𝜁 cos𝜔𝑡

det

For standard initial conditions we have

𝐵 = 𝑥0 − 𝐺2, 𝐴 = �̇�0 + 𝜁𝜔𝑛 𝐵 − 𝜔𝐺1
𝜔𝐷

.
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The Particular Integral, 3

Substituting 𝐺1 and 𝐺2 in our expression of the particular integral it is

𝜉(𝑡) = Δst
det

((1 − 𝛽2) sin𝜔𝑡 − 2𝛽𝜁 cos𝜔𝑡) .

The general integral for 𝑝(𝑡) = 𝑝0 sin𝜔𝑡 is hence

𝑥(𝑡) = exp(−𝜁𝜔n𝑡) (𝐴 𝑠𝑖𝑛𝜔D𝑡 + 𝐵 cos𝜔D𝑡) + Δst
(1 − 𝛽2) sin𝜔𝑡 − 2𝛽𝜁 cos𝜔𝑡

det

For standard initial conditions we have

𝐵 = 𝑥0 − 𝐺2, 𝐴 = �̇�0 + 𝜁𝜔𝑛 𝐵 − 𝜔𝐺1
𝜔𝐷

.
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The Particular Integral, 4

For a generic harmonic load

𝑝(𝑡) = 𝑝sin sin𝜔𝑡 + 𝑝cos cos𝜔𝑡,

with Δsin = 𝑝sin/𝑘 and Δcos = 𝑝cos/𝑘 the integral of the motion is

𝑥(𝑡) = exp(−𝜁𝜔n𝑡) (𝐴 𝑠𝑖𝑛𝜔D𝑡 + 𝐵 cos𝜔D𝑡)+

+ Δsin
(1 − 𝛽2) sin𝜔𝑡 − 2𝛽𝜁 cos𝜔𝑡

det
+

+ Δcos
(1 − 𝛽2) cos𝜔𝑡 + 2𝛽𝜁 sin𝜔𝑡

det
.
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Stationary Response

Examination of the general integral

𝑥(𝑡) = exp(−𝜁𝜔n𝑡) (𝐴 𝑠𝑖𝑛𝜔D𝑡 + 𝐵 cos𝜔D𝑡) + Δst
(1 − 𝛽2) sin𝜔𝑡 − 2𝛽𝜁 cos𝜔𝑡

det

shows that we have a transient response, that depends on the initial conditions and
damps out for large values of the argument of the real exponential, and a so called
steady‐state response, corresponding to the particular integral, 𝑥s‐s(𝑡) ≡ 𝜉(𝑡), that
remains constant in amplitude and phase as long as the external loading is being
applied.

From an engineering point of view, we have a specific interest in the steady‐
state response, as it is the long term component of the response.
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Stationary Response

Examination of the general integral

𝑥(𝑡) = exp(−𝜁𝜔n𝑡) (𝐴 𝑠𝑖𝑛𝜔D𝑡 + 𝐵 cos𝜔D𝑡) + Δst
(1 − 𝛽2) sin𝜔𝑡 − 2𝛽𝜁 cos𝜔𝑡

det

shows that we have a transient response, that depends on the initial conditions and
damps out for large values of the argument of the real exponential, and a so called
steady‐state response, corresponding to the particular integral, 𝑥s‐s(𝑡) ≡ 𝜉(𝑡), that
remains constant in amplitude and phase as long as the external loading is being
applied.

From an engineering point of view, we have a specific interest in the steady‐
state response, as it is the long term component of the response.
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Examination of the general integral

𝑥(𝑡) = exp(−𝜁𝜔n𝑡) (𝐴 𝑠𝑖𝑛𝜔D𝑡 + 𝐵 cos𝜔D𝑡) + Δst
(1 − 𝛽2) sin𝜔𝑡 − 2𝛽𝜁 cos𝜔𝑡

det

shows that we have a transient response, that depends on the initial conditions and
damps out for large values of the argument of the real exponential, and a so called
steady‐state response, corresponding to the particular integral, 𝑥s‐s(𝑡) ≡ 𝜉(𝑡), that
remains constant in amplitude and phase as long as the external loading is being
applied.

From an engineering point of view, we have a specific interest in the steady‐
state response, as it is the long term component of the response.
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The Angle of Phase

Let’s write the particular integral in terms of its amplitude and a phase difference,
𝐺 = Δst𝐷 and 𝜃: 𝜉(𝑡) = Δst 𝑅(𝑡; 𝛽, 𝜁), 𝑅 = 𝐷(𝛽, 𝜁) 𝑠𝑖𝑛 (𝜔𝑡 − 𝜃) .
The phase difference 𝜃 depends on 𝛽 and 𝜁 and its expression is:

𝜃(𝛽, 𝜁) = arctan 2𝜁𝛽/1 − 𝛽2.

 0

π/2

π

 0  0.5  1  1.5  2

ι

β

θ(β;ζ=0.00)
θ(β;ζ=0.02)
θ(β;ζ=0.05)
θ(β;ζ=0.20)
θ(β;ζ=0.70)
θ(β;ζ=1.00)

For small values of 𝜁 𝜃(𝛽, 𝜁) has a sharp variation
around 𝛽 = 1 and in the case of lightly damped
structures the response is approximately in phase
or in opposition for, respectively, low and high fre‐
quencies of excitation.
It is worthmentioning that for 𝛽 = 1 the response
is always in perfect quadrature with the load, a
fact that enables to detect resonant response in
dynamic tests of structures.
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Dynamic Magnification Ratio

The dynamic magnification factor,𝐷 = 𝐷(𝛽, 𝜁), is the amplitude of the stationary response
normalized with respect to Δst:

𝐷(𝛽, 𝜁) = (1 − 𝛽2)2 + (2𝛽𝜁)2
(1 − 𝛽2)2 + (2𝛽𝜁)2 = 1

(1 − 𝛽2)2 + (2𝛽𝜁)2

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3

D(β,ζ=0.00)
D(β,ζ=0.02)
D(β,ζ=0.05)
D(β,ζ=0.20)
D(β,ζ=0.70)
D(β,ζ=1.00)

𝐷(𝛽, 𝜁) has larger peak values for
decreasing values of 𝜁,
the approximate value of the peak, very
good for a slightly damped structure, is
1/2𝜁,
for larger damping, peaks move toward
the origin and for 𝜁 = 1

√2
the peak is in the

origin,

for damping ratios 𝜁 > 1
√2

we have a
single maximum for 𝛽 = 0.
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Dynamic Magnification Ratio (2)

The location of the response peak is given by the equation

𝑑 𝐷(𝛽, 𝜁)
𝑑 𝛽 = 0, ⇒ 𝛽3 + (2𝜁2 − 1)𝛽 = 0

the 3 roots are
𝛽𝑖 = 0,± 1 − 2𝜁2.

We are interested in a real, positive root, so we are restricted to 0 < 𝜁 ≤ 1
√2
.

In this interval, substituting 𝛽 = 1 − 2𝜁2 in the expression of the response ratio, we have

𝐷max =
1
2𝜁

1
1 − 𝜁2

≈ 1
2𝜁 for small values of 𝜁.

When 𝜁 = 1
√2

the equation 𝛽3 + (2𝜁2 − 1)𝛽 = 𝛽3 = 0 has a triple root for 𝛽 = 0 or, in
other words, we have a very flat maximum.

Note that, for a relatively large damping ratio, 𝜁 = 20%, the error of 1/2𝜁 with respect to
𝐷max is in the order of 2%.
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Harmonic Exponential Load

Consider the EOM for a load modulated by an exponential of imaginary argument:

�̈� + 2𝜁𝜔n�̇� + 𝜔2
n𝑥 = Δst𝜔2

n exp(𝑖(𝜔𝑡 − 𝜙)).

The particular solution and its derivatives are

𝜉 = 𝐺 exp(𝑖𝜔𝑡 − 𝑖𝜙),
̇𝜉 = 𝑖𝜔𝐺 exp(𝑖𝜔𝑡 − 𝑖𝜙),
̈𝜉 = −𝜔2𝐺 exp(𝑖𝜔𝑡 − 𝑖𝜙),

where 𝐺 is a complex constant.
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Harmonic Exponential Load

Consider the EOM for a load modulated by an exponential of imaginary argument:

�̈� + 2𝜁𝜔n�̇� + 𝜔2
n𝑥 = Δst𝜔2

n exp(𝑖(𝜔𝑡 − 𝜙)).

The particular solution and its derivatives are

𝜉 = 𝐺 exp(𝑖𝜔𝑡 − 𝑖𝜙),
̇𝜉 = 𝑖𝜔𝐺 exp(𝑖𝜔𝑡 − 𝑖𝜙),
̈𝜉 = −𝜔2𝐺 exp(𝑖𝜔𝑡 − 𝑖𝜙),

where 𝐺 is a complex constant.
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Harmonic Exponential Load

Substituting, dividing by𝜔2
n , removing the dependency on exp(𝑖𝜔𝑡) and solving

for 𝐺 yields

𝐺 = Δst
1

(1 − 𝛽2) + 𝑖(2𝜁𝛽) = Δst
(1 − 𝛽2) − 𝑖(2𝜁𝛽)
(1 − 𝛽2)2 + (2𝜁𝛽)2 .

We can write

𝑥s‐s = Δst𝐷(𝛽, 𝜁) exp 𝑖𝜔𝑡
with

𝐷(𝛽, 𝜁) = 1
(1 − 𝛽2) + 𝑖(2𝜁𝛽)

It is simpler to represent the stationary response of a damped oscillator using the
complex exponential representation.
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Harmonic Exponential Load

Substituting, dividing by𝜔2
n , removing the dependency on exp(𝑖𝜔𝑡) and solving

for 𝐺 yields

𝐺 = Δst
1

(1 − 𝛽2) + 𝑖(2𝜁𝛽) = Δst
(1 − 𝛽2) − 𝑖(2𝜁𝛽)
(1 − 𝛽2)2 + (2𝜁𝛽)2 .

We can write

𝑥s‐s = Δst𝐷(𝛽, 𝜁) exp 𝑖𝜔𝑡
with

𝐷(𝛽, 𝜁) = 1
(1 − 𝛽2) + 𝑖(2𝜁𝛽)

It is simpler to represent the stationary response of a damped oscillator using the
complex exponential representation.
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Measuring Support Accelerations

We have seen that in seismic analysis the loading is proportional to the ground
acceleration.
With the equation of motion valid for a harmonic support acceleration:

�̈� + 2𝜁𝛽𝜔n�̇� + 𝜔2
n𝑥 = −𝑎𝑔 sin𝜔𝑡,

the stationary response is 𝜉 = 𝑚𝑎𝑔
𝑘 𝐷(𝛽, 𝜁) sin(𝜔𝑡 − 𝜃).

If the damping ratio of the oscillator is 𝜁 ≊ 0.7, then the Dynamic Amplification 𝐷(𝛽) ≊ 1 for
0.0 < 𝛽 < 0.6.

Oscillator’s displacements will be proportional to the accelerations of the support for
applied frequencies up to about six‐tenths of the natural frequency of the instrument.
As it is possible to record the oscillator displacements by means of electro‐mechanical or
electronic devices, it is hence possible to measure, within an almost constant scale factor,
the ground accelerations component up to a frequency of the order of 60% of the natural
frequency of the oscillator.
This is not the whole story, entire books have been written on the problem of exactly recovering the support acceleration from an accelerographic
record.
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We have seen that in seismic analysis the loading is proportional to the ground
acceleration.
With the equation of motion valid for a harmonic support acceleration:

�̈� + 2𝜁𝛽𝜔n�̇� + 𝜔2
n𝑥 = −𝑎𝑔 sin𝜔𝑡,

the stationary response is 𝜉 = 𝑚𝑎𝑔
𝑘 𝐷(𝛽, 𝜁) sin(𝜔𝑡 − 𝜃).

If the damping ratio of the oscillator is 𝜁 ≊ 0.7, then the Dynamic Amplification 𝐷(𝛽) ≊ 1 for
0.0 < 𝛽 < 0.6.
Oscillator’s displacements will be proportional to the accelerations of the support for
applied frequencies up to about six‐tenths of the natural frequency of the instrument.

As it is possible to record the oscillator displacements by means of electro‐mechanical or
electronic devices, it is hence possible to measure, within an almost constant scale factor,
the ground accelerations component up to a frequency of the order of 60% of the natural
frequency of the oscillator.
This is not the whole story, entire books have been written on the problem of exactly recovering the support acceleration from an accelerographic
record.
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applied frequencies up to about six‐tenths of the natural frequency of the instrument.
As it is possible to record the oscillator displacements by means of electro‐mechanical or
electronic devices, it is hence possible to measure, within an almost constant scale factor,
the ground accelerations component up to a frequency of the order of 60% of the natural
frequency of the oscillator.

This is not the whole story, entire books have been written on the problem of exactly recovering the support acceleration from an accelerographic
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We have seen that in seismic analysis the loading is proportional to the ground
acceleration.
With the equation of motion valid for a harmonic support acceleration:
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n𝑥 = −𝑎𝑔 sin𝜔𝑡,

the stationary response is 𝜉 = 𝑚𝑎𝑔
𝑘 𝐷(𝛽, 𝜁) sin(𝜔𝑡 − 𝜃).

If the damping ratio of the oscillator is 𝜁 ≊ 0.7, then the Dynamic Amplification 𝐷(𝛽) ≊ 1 for
0.0 < 𝛽 < 0.6.
Oscillator’s displacements will be proportional to the accelerations of the support for
applied frequencies up to about six‐tenths of the natural frequency of the instrument.
As it is possible to record the oscillator displacements by means of electro‐mechanical or
electronic devices, it is hence possible to measure, within an almost constant scale factor,
the ground accelerations component up to a frequency of the order of 60% of the natural
frequency of the oscillator.
This is not the whole story, entire books have been written on the problem of exactly recovering the support acceleration from an accelerographic
record.
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Measuring Displacements

Consider now a harmonic displacement of the support,

𝑢𝑔(𝑡) = 𝑢𝑔 sin𝜔𝑡.

The support acceleration (disregarding the sign) is

𝑎𝑔(𝑡) = 𝜔2𝑢𝑔 sin𝜔𝑡

the equation of motion is

�̈� + 2𝜁𝛽𝜔n�̇� + 𝜔2
n𝑥 = −𝜔2𝑢𝑔 sin𝜔𝑡,

and eventually the stationary response is 𝜉 = 𝑢𝑔 𝛽2 𝐷(𝛽, 𝜁) sin(𝜔𝑡 − 𝜃).
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Measuring Displacements

Let’s see a graph of the dynamic amplification factor derived above.

We see that the displacement of the
instrument is approximately equal to the
support displacement for all the
excitation frequencies greater than the
natural frequency of the instrument, for
a damping ratio 𝜁 ≊ .5.
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It is possible to measure the support displacement measuring the deflection of the
oscillator, within an almost constant scale factor, for excitation frequencies larger
than𝜔n.
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Vibration Isolation
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Vibration Isolation

Vibration isolation is a subject too broad to be treated in detail, we’ll present the
basic principles involved in two problems,

1 prevention of harmful vibrations in supporting structures due to oscillatory
forces produced by operating equipment,

2 prevention of harmful vibrations in sensitive instruments due to vibrations of
their supporting structures.



SDoF Linear
Oscillator

Giacomo Boffi

Vibration
Isolation
Introduction

Force Isolation

Displacement
Isolation

Isolation
Effectiveness

Force Isolation

Consider a rotating machine that produces an oscillatory force 𝑝0 sin𝜔𝑡 due to
unbalance in its rotating part, that has a total mass𝑚 and is mounted on a
spring‐damper support.
Its steady‐state relative displacement is given by

𝑥s‐s =
𝑝0
𝑘 𝐷 sin(𝜔𝑡 − 𝜃).

This result depend on the assumption that the supporting structure deflections are negligible respect
to the relative systemmotion.
The steady‐state spring and damper forces are

𝑓𝑆 = 𝑘 𝑥ss = 𝑝0 𝐷 sin(𝜔𝑡 − 𝜃),

𝑓𝐷 = 𝑐 �̇�ss =
𝑐𝑝0 𝐷𝜔

𝑘 cos(𝜔𝑡 − 𝜃) = 2 𝜁 𝛽 𝑝0 𝐷 cos(𝜔𝑡 − 𝜃).
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Transmitted force

The spring and damper forces are in quadrature, so the amplitude of the
steady‐state reaction force is given by

𝑓max = 𝑝0 𝐷 1 + (2𝜁𝛽)2 = 1 + (2𝜁𝛽)2

(1 − 𝛽2)2 + (2𝜁𝛽)2
.
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Transmitted force

The ratio of the maximum transmitted
force to the amplitude of the applied
force is the transmissibility ratio (TR),

TR = 𝑓max

𝑝0
= 1 + (2𝜁𝛽)2

(1 − 𝛽2)2 + (2𝜁𝛽)2
.
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1. For 𝛽 < √2, TR ≥ 1, the transmitted force is not reduced.
2. For 𝛽 > √2, TR < 1, note that for the same 𝛽 TR is larger for larger values of 𝜁.
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Displacement Isolation

Dual to force transmission there is the problem of the steady‐state total displacements of a mass𝑚,
supported by a suspension system (i.e., spring+damper) and subjected to a harmonic motion of its
base.

Let’s write the base motion using the exponential notation, 𝑢𝑔(𝑡) = 𝑢𝑔0 exp 𝑖𝜔𝑡. The apparent
force is 𝑝eff = 𝑚𝜔2𝑢𝑔𝑜 exp 𝑖𝜔𝑡 and the steady state relative displacement is 𝑥ss = 𝑢𝑔0 𝛽2𝐷 exp 𝑖𝜔𝑡.
The mass total displacement is given by

𝑥tot = 𝑥s‐s + 𝑢𝑔(𝑡) = 𝑢𝑔0
𝛽2

(1 − 𝛽2) + 2 𝑖 𝜁𝛽 + 1 exp 𝑖𝜔𝑡

= 𝑢𝑔0 (1 + 2𝑖𝜁𝛽) 1
(1 − 𝛽2) + 2 𝑖 𝜁𝛽 exp 𝑖𝜔𝑡

= 𝑢𝑔0 1 + (2𝜁𝛽)2 𝐷 exp 𝑖 (𝜔𝑡 − 𝜑).

If we define the transmissibility ratio TR as the ratio of the maximum total response to the support
displacement amplitude, we find that, as in the previous case,

TR = 𝐷 1 + (2𝜁𝛽)2.
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Isolation Effectiveness

Define the isolation effectiveness,

IE = 1 − TR,

IE=1 means complete isolation, i.e., 𝛽 = ∞, while IE=0 is no isolation, and takes
place for 𝛽 = √2.
As effective isolation requires low damping, we can approximate TR ≊ 1/(𝛽2 − 1),
in which case we have IE = (𝛽2 − 2)/(𝛽2 − 1). Solving for 𝛽2, we have
𝛽2 = (2 − IE)/(1 − IE), but

𝛽2 = 𝜔2/𝜔2
n = 𝜔2 (𝑚/𝑘) = 𝜔2 (𝑊/𝑔𝑘) = 𝜔2 (Δst/𝑔)

where𝑊 is the weight of the mass and Δst is the static deflection under self
weight. Finally, from𝜔 = 2𝜋 𝑓 we have

𝑓 = 1
2𝜋

𝑔
Δst

2 − IE
1 − IE
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Isolation Effectiveness (2)

The strange looking

𝑓 = 1
2𝜋

𝑔
Δst

2 − IE
1 − IE

can be plotted 𝑓 vs Δst for different values
of IE, obtaining a design chart.
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Knowing the frequency of excitation and the required level of vibration isolation
efficiency (IE), one can determine the minimum static deflection (proportional to
the spring flexibility) required to achieve the required IE. It is apparent that any
isolation systemmust be very flexible to be effective.
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Evaluation of Viscous Damping Ratio



SDoF Linear
Oscillator

Giacomo Boffi

Evaluation of
damping
Introduction

Free vibration decay

Resonant
amplification

Half Power

Resonance Energy
Loss

Evaluation of damping

The mass and stiffness of physical systems of interest are usually evaluated easily,
but this is not feasible for damping, as the energy is dissipated by different
mechanisms, some one not fully understood... it is even possible that dissipation
cannot be described in term of viscous‐damping, But it generally is possible to
measure an equivalent viscous‐damping ratio by experimental methods:

free‐vibration decay method,
resonant amplification method,
half‐power (bandwidth) method,
resonance cyclic energy loss method.
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The mass and stiffness of physical systems of interest are usually evaluated easily,
but this is not feasible for damping, as the energy is dissipated by different
mechanisms, some one not fully understood... it is even possible that dissipation
cannot be described in term of viscous‐damping, But it generally is possible to
measure an equivalent viscous‐damping ratio by experimental methods:
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resonance cyclic energy loss method.
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Free vibration decay

We already have discussed the free‐vibration decay method,

𝜁 = 𝛿𝑠
2𝜋 𝑠 (𝜔n/𝜔𝐷)

= 𝛿𝑠
2𝑠𝜋 1 − 𝜁2

with 𝛿𝑠 = ln 𝑥𝑟
𝑥𝑟+𝑠

, logarithmic decrement. The method is simple and its
requirements are minimal, but some care must be taken in the interpretation of
free‐vibration tests, because the damping ratio decreases with decreasing
amplitudes of the response, meaning that for a very small amplitude of the motion
the effective values of the damping can be underestimated.
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Resonant amplification

This method assumes that it is possible to measure the stiffness of the structure, and that
damping is small. The experimenter (𝑎)measures the steady‐state response 𝑥ss of a SDOF
system under a harmonic loading for a number of different excitation frequencies
(eventually using a smaller frequency step when close to the resonance), (𝑏) finds the
maximum value 𝐷max = max{𝑥ss}/Δst of the dynamic magnification factor, (𝑐) uses the
approximate expression (good for small 𝜁) 𝐷max = 1/2𝜁 to write

𝐷max =
1
2𝜁 =

max{𝑥ss}
Δst

and finally (𝑑) has

𝜁 = Δst

2max{𝑥ss}
.

The most problematic aspect here is getting a good estimate of Δst, if the results of a static
test aren’t available.
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Half Power

The non dimensional frequencies where the response is 1/√2 times the peak value
can be computed from the equation

1
(1 − 𝛽2)2 + (2𝛽𝜁)2

= 1
√2

1
2𝜁 1 − 𝜁2

squaring both sides and solving for 𝛽2 gives

𝛽21,2 = 1 − 2𝜁2 ∓ 2𝜁 1 − 𝜁2

For small 𝜁 we can use the binomial approximation and write

𝛽1,2 = 1 − 2𝜁2 ∓ 2𝜁 1 − 𝜁2
1
2 ≊ 1 − 𝜁2 ∓ 𝜁 1 − 𝜁2
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Half power (2)

From the approximate expressions for the difference of the half power frequency
ratios,

𝛽2 − 𝛽1 = 2𝜁 1 − 𝜁2 ≊ 2𝜁
and their sum

𝛽2 + 𝛽1 = 2(1 − 𝜁2) ≊ 2
we can deduce that

𝛽2 − 𝛽1
𝛽2 + 𝛽1

= 𝑓2 − 𝑓1
𝑓2 + 𝑓1

≊ 2𝜁 1 − 𝜁2
2(1 − 𝜁2) ≊ 𝜁, or 𝜁 ≊ 𝑓2 − 𝑓1

𝑓2 + 𝑓1

where 𝑓1, 𝑓2 are the frequencies at which the steady state amplitudes equal 1/√2
times the peak value, frequencies that can be determined from a dynamic test
where detailed test data is available.
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Resonance Cyclic Energy Loss

If it is possible to determine the phase of the s‐s response, it is possible to measure
𝜁 from the amplitude 𝜌 of the resonant response.
At resonance, the deflections and accelerations are in quadrature with the
excitation, so that the external force is equilibrated only by the viscous force, as
both elastic and inertial forces are also in quadrature with the excitation.
The equation of dynamic equilibrium is hence:

𝑝0 = 𝑐 �̇� = 2𝜁𝜔n𝑚(𝜔n𝜌).

Solving for 𝜁 we obtain:
𝜁 = 𝑝0

2𝑚𝜔2
n𝜌

.
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