
EP_Exact+Numerical

March 19, 2020

In [1]: %matplotlib inline
from pylab import *
style.use(['fivethirtyeight', './00_mplrc'])

import matplotlib
matplotlib.rcParams['figure.figsize'] = [12, 5]
matplotlib.rcParams['axes.labelsize'] = 'x-large'
matplotlib.rcParams['xtick.labelsize'] = 'large'
matplotlib.rcParams['ytick.labelsize'] = 'large'
matplotlib.rcParams['figure.facecolor'] = 'FCFFFF'

1 Exact Integration for an EP SDOF System

We want to compute the response, using the constant acceleration algorithm plus MNR, of an
Elasto Plastic (EP) system... but how we can confirm or reject our results?

It turns out that computing the exact response of an EP system with a single degree of freedom
is relatively simple.

Here we discuss a program that computes the analytical solution of our problem.
The main building blocks of the program will be two functions that compute, for the elastic

phase and for the plastic phase, the analytical functions that give the displacement and the velocity
as functions of time.

1.1 Elastic response

We are definining a function that, for a linear dynamic system, returns not the displacement or
the velocity at a given time, but rather a couple of functions of time that we can use afterwards to
compute displacements and velecities at any time of interest.

The response depends on the parameters of the dynamic system m, c, k, on the initial conditions
x0, v0, and on the characteristics of the external load.

Here the external load is limited to a linear combination of a cosine modulated, a sine modu-
lated (both with the same frequency ω) and a constant force,

P(t) = cC cos ωt + cS sin ωt + F,
but that’s all that is needed for the present problem.
The particular integral being
ξ(t) = S cos ωt + R sin ωt + D,

1

substituting in the equation of motion and equating all the corresponding terms gives the
undetermined coefficients in ξ(t), then evaluation of the general integral and its time derivative
for t = 0 permits to find the constants in the homogeneous part of the integral.

The final step is to define the displacement and the velocity function, according to the constants
we have determined, and to return these two function to the caller

In [3]: def resp_elas(m,c,k, cC,cS,w, F, x0,v0):
wn2 = k/m ; wn = sqrt(wn2) ; beta = w/wn
z = c/(2*m*wn)
wd = wn*sqrt(1-z*z)
xi(t) = R sin(w t) + S cos(w t) + D
det = (1.-beta**2)**2+(2*beta*z)**2
R = ((1-beta**2)*cS + (2*beta*z)*cC)/det/k
S = ((1-beta**2)*cC - (2*beta*z)*cS)/det/k
D = F/k
A = x0-S-D
B = (v0+z*wn*A-w*R)/wd

def x(t):
return exp(-z*wn*t)*(A*cos(wd*t)+B*sin(wd*t))+R*sin(w*t)+S*cos(w*t)+D

def v(t):
return (-z*wn*exp(-z*wn*t)*(A*cos(wd*t)+B*sin(wd*t))

+wd*exp(-z*wn*t)*(B*cos(wd*t)-A*sin(wd*t))
+w*(R*cos(w*t)-S*sin(w*t)))

return x,v

1.2 Plastic response

In this case the equation of motion is
mẍ + cẋ = P(t),
the homogeneous response is
x(t) = A exp(− c

m t) + B,
and the particular integral, for a load described as in the previous case, is (slightly different...)
ξ(t) = S cos ωt + R sin ωt + Dt.
Having computed R, S, and D from substituting ξ in the equation of motion, A and B by

imposing the initial conditions,we can define the displacement and velocity functions and, finally,
return these two functions to the caller.

In [4]: def resp_yield(m,c, cC,cS,w, F, x0,v0):
csi(t) = R sin(w t) + S cos(w t) + Q t
Q = F/c
det = w**2*(c**2+w**2*m**2)
R = (+w*c*cC-w*w*m*cS)/det
S = (-w*c*cS-w*w*m*cC)/det
x(t) = A exp(-c t/m) + B + R sin(w t) + S cos(w t) + Q t
v(t) = - c A/m exp(-c t/m) + w R cos(w t) - w S sin(w t) + Q
#

2

v(0) = -c A / m + w R + Q = v0
A = m*(w*R + Q - v0)/c
x(0) = A + B + S = x0
B = x0 - A - S

def x(t):
return A*exp(-c*t/m)+B+R*sin(w*t)+S*cos(w*t)+Q*t

def v(t):
return -c*A*exp(-c*t/m)/m+w*R*cos(w*t)-w*S*sin(w*t)+Q

return x,v

1.2.1 An utility function

We need to find when

1. the spring yields
2. the velocity is zero

to individuate the three ranges of different behaviour

1. elastic
2. plastic
3. elastic, with permanent deformation.

We can use the simple and robust algorithm of bisection to find the roots for
xel(t) = xy and ẋep(t) = 0.

In [5]: def bisect(f,val,x0,x1):
h = (x0+x1)/2.0
fh = f(h)-val
if abs(fh)<1e-8 : return h
f0 = f(x0)-val
if f0*fh > 0 :

return bisect(f, val, h, x1)
else:

return bisect(f, val, x0, h)

1.3 The system parameters

In [7]: mass = 1000. # kg
k = 40000. # N/m
zeta = 0.03 # damping ratio
fy = 2500. # N
print('Limit displacement Uy =', fy*1000/k, 'mm')

Limit displacement Uy = 62.5 mm

3

1.4 Derived quantities

The damping coefficient c and the first yielding displacement, xy.

In [11]: damp = 2*zeta*sqrt(k*mass)
xy = fy/k # m

1.5 Load definition

Our load is a half-sine impulse

p(t) =

{
p0 sin(πt

t1
) 0 ≤ t ≤ t1,

0 otherwise.
In our exercise

In [13]: t1 = 0.3 # s
w = pi/t1 # rad/s
Po = 6000. # N

1.6 The actual computations

1.6.1 Elastic, initial conditions, get system functions

In [10]: x0=0.0 # m
v0=0.0 # m/s
x_next, v_next = resp_elas(mass,damp,k, 0.0,Po,w, 0.0, x0,v0)

1.6.2 Yielding time is

The time of yielding is found solving the equation xnext(t) = xy

In [12]: t_yield = bisect(x_next, xy, 0.0, t1)
print(t_yield, x_next(t_yield)*k)

0.2032657027244568 2500.0000921877736

1.6.3 Forced response in elastic range is

In [14]: t_el = linspace(0.0, t_yield, 201)
x_el = vectorize(x_next)(t_el)
v_el = vectorize(v_next)(t_el)

figure(0)
plot(t_el,x_el,

(0,0.25),(xy,xy),'--b',
(t_yield,t_yield),(0,0.0699),'--b')

title("$x_{el}(t)$")
xlabel("Time, s")
ylabel("Displacement, m")

4

figure(1)
plot(t_el,v_el)
title("$\dot x_{el}(t)$")
xlabel("Time, s")
ylabel("Velocity, m/s")

Out[14]: Text(0,0.5,'Velocity, m/s')

1.6.4 Preparing for EP response

First, the system state at ty is the initial condition for the EP response

In [15]: x0=x_next(t_yield)
v0=v_next(t_yield)
print(x0, v0)

5

0.06250000230469434 0.7097432496991541

now, the load must be expressed in function of a restarted time,

$\tau=t-t_y\;\rightarrow\;t=\tau+t_y\;\rightarrow\;\sin(\omega t)=\sin(\omega\tau+\omega t_y)$

$\rightarrow\;\sin(\omega t)=\sin(\omega\tau)\cos(\omega t_y)+\cos(\omega\tau)\sin(\omega t_y)$

In [16]: cS = Po*cos(w*t_yield)
cC = Po*sin(w*t_yield)

print(Po*sin(w*0.55), cS*sin(w*(0.55-t_yield))+cC*cos(w*(0.55-t_yield)))

-2999.999999999998 -2999.999999999996

Now we generate the displacement and velocity functions for the yielded phase, please note
that the yielded spring still exerts a constant force fy on the mass, and that this fact must be (and
it is) taken into account.

In [17]: x_next, v_next = resp_yield(mass, damp, cC,cS,w, -fy, x0,v0)

At this point I must confess that I have already peeked the numerical solution, hence I know
that the velocity at t = t1 is still greater than 0 and I know that the current solution is valid in the
interval ty ≤ t ≤ t1.

In [18]: t_y1 = linspace(t_yield, t1, 101)
x_y1 = vectorize(x_next)(t_y1-t_yield)
v_y1 = vectorize(v_next)(t_y1-t_yield)

In [19]: figure(3)
plot(t_el,x_el, t_y1,x_y1,

(0,0.25),(xy,xy),'--b',
(t_yield,t_yield),(0,0.0699),'--b')

xlabel("Time, s")
ylabel("Displacement, m")

figure(4)
plot(t_el, v_el, t_y1, v_y1)
xlabel("Time, s")
ylabel("Velocity, m/s")

Out[19]: Text(0,0.5,'Velocity, m/s')

6

In the next phase, still it is ẋ > 0 so that the spring is still yielding, but now p(t) = 0, so we
must compute two new state functions, starting as usual from the initial conditions (note that the
yielding force is still applied)

In [20]: x0 = x_next(t1-t_yield)
v0 = v_next(t1-t_yield)
print(x0, v0)
x_next, v_next = resp_yield(mass, damp, 0, 0, w, -fy, x0, v0)

t2 = t1 + bisect(v_next, 0.0, 0, 0.3)
print(t2)
t_y2 = linspace(t1, t2, 101)
x_y2 = vectorize(x_next)(t_y2-t1)
v_y2 = vectorize(v_next)(t_y2-t1)
print(x_next(t2-t1))

0.13520933022261195 0.7099968785770994
0.5697131395339965

7

0.22932407805445898

In [21]: figure(5)
plot(t_el,x_el, t_y1,x_y1, t_y2, x_y2,

(0,0.25),(xy,xy),'--b',
(t_yield,t_yield),(0,0.0699),'--b')

xlabel("Time, s")
ylabel("Displacement, m")

figure(6)
plot(t_el, v_el, t_y1, v_y1, t_y2, v_y2)
xlabel("Time, s")
ylabel("Velocity, m/s")

Out[21]: Text(0,0.5,'Velocity, m/s')

8

1.6.5 Elastic unloading

The only point worth commenting is the constant force that we apply to our system.
The force-displacement relationship for an EP spring is
fE = k(x − xpl) = kx − k(xmax − xy)
taking the negative, constant part of the last expression into the right member of the equation

of equilibrium we have a constant term, as follows

In [22]: x0 = x_next(t2-t1) ; v0 = 0.0
x_next, v_next = resp_elas(mass,damp,k, 0.0,0.0,w, k*x0-fy, x0,v0)
t_e2 = linspace(t2,4.0,201)
x_e2 = vectorize(x_next)(t_e2-t2)
v_e2 = vectorize(v_next)(t_e2-t2)

now we are ready to plot the whole response

In [23]: # ------------------------------
figure(7) ;
plot(t_el, x_el, '-b',

t_y1, x_y1, '-r',
t_y2, x_y2, '-r',
t_e2, x_e2, '-b',
(0.6, 4.0), (x0-xy, x0-xy), '--y')

title("In blue: elastic phases.\n"+
"In red: yielding phases.\n"+
"Dashed: permanent plastic deformation.")

xlabel("Time, s")
ylabel("Displacement, m")

Out[23]: Text(0,0.5,'Displacement, m')

9

1.7 Numerical solution

first, we need the load function

In [24]: def make_p(p0,t1):
"""make_p(p0,t1) returns a 1/2 sine impulse load function, p(t)"""
def p(t):

""
if t<t1:

return p0*sin(t*pi/t1)
else:

return 0.0
return p

and also a function that, given the displacement, the velocity and the total plastic deformation,
returns the stiffness and the new p.d.; this function is defined in terms of the initial stiffness and
the yielding load

In [25]: def make_kt(k,fy):
"make_kt(k,fy) returns a function kt(u,v,up) returning kt, up"
def kt(u,v,up):

f=k*(u-up)
if (-fy)<f<fy: return k,up
if fy<=f and v>0: up=u-uy;return 0,up
if fy<=f and v<=0: up=u-uy;return k,up
if f<=(-fy) and v<0: up=u+uy;return 0,up
else: up=u+uy;return k,up

return kt

1.7.1 Problem data

In [26]: # Exercise from lesson 04
#
mass = 1000.00 # kilograms
k = 40000.00 # Newtons per metre
zeta = 0.03 # zeta is the damping ratio
fy = 2500.00 # yelding force, Newtons
t1 = 0.30 # half-sine impulse duration, seconds
p0 = 6000.00 # half-sine impulse peak value, Newtons
uy = fy/k # yelding displacement, metres

1.7.2 Initialize the algorithm

1. compute the functions that return the load and the tangent sstiffness + plastic deformation
2. compute the damping constant
3. for a given time step, compute all the relevant algorithmic constants, with γ = 1

2 and β = 1
4

In [27]: # using the above constants, define the loading function
p=make_p(p0,t1)

10

the following function, given the final displacement, the final
velocity and the initial plastic deformation returns a) the tangent
stiffness b) the final plastic deformation
kt=make_kt(k,fy)

we need the damping coefficient "c", to compute its value from the
damping ratio we must first compute the undamped natural frequency
wn=sqrt(k/mass) # natural frequency of the undamped system
damp=2*mass*wn*zeta # the damping coefficient

the time step
h=0.005
required duration for the response
t_end = 4.0
the number of time steps to arrive at t_end
nsteps=int((t_end+h/100)/h)+1
the maximum number of iterations in the Newton-Raphson procedure
maxiters = 30
using the constant acceleration algorithm
below we define the relevant algorithmic constants
gamma=0.5
beta=1./4.
gb=gamma/beta
a=mass/(beta*h)+damp*gb
b=0.5*mass/beta+h*damp*(0.5*gb-1.0)

1.7.3 System state initialization

and a bit more, in species we create two empty vectors to hold the computation results

In [28]: t0=0.0
u0=0.0
up=0.0
v0=0.0
p0=p(t0)
(k0, up)=kt(u0,v0,up)
a0=(p0-damp*v0-k0*(u0-up))/mass

time = []; disp = []

1.7.4 Iteration

We iterate over time and, if there is a state change, over the single time step to equilibrate the
unbalanced loadings

In [29]: for i in range(nsteps):

time.append(t0); disp.append(u0)

11

advance time, next external load value, etc
t1 = t0 + h
p1 = p(t1)
Dp = p1 - p0
Dp_= Dp + a*v0 + b*a0
k_ = k0 + gb*damp/h + mass/(beta*h*h)
we prepare the machinery for the modified Newton-Raphson
algorithm. if we have no state change in the time step, then the
N-R algorithm is equivalent to the standard procedure
u_init=u0; v_init=v0 # initial state
f_spring=k*(u0-up) # the force in the spring
DR=Dp_ # the unbalanced force, initially equal to the

external load increment
for j in range(maxiters):

Du=DR/k_ # the disp increment according to the initial stiffness
u_next = u_init + Du
v_next = v_init + gb*Du/h - gb*v_init + h*(1.0-0.5*gb)*a0

we are interested in the total plastic elongation
oops,up=kt(u_next,v_next,up)

because we need the spring force at the end
of the time step

f_spring_next=k*(u_next-up)
so that we can compute the fraction of the
incremental force that's equilibrated at the
end of the time step

df=f_spring_next-f_spring+(k_-k0)*Du
and finally the incremental forces unbalanced
at the end of the time step

DR=DR-df
finish updating the system state

u_init=u_next; v_init=v_next; f_spring=f_spring_next
if the unbalanced load is small enough (the
criteria used in practical programs are
energy based) exit the loop - note that we
have no plasticization/unloading DR==0 at the
end of the first iteration

if abs(DR)<fy*1E-6: break
now the load increment is balanced by the spring force and
increments in inertial and damping forces, we need to compute the
full state at the end of the time step, and to change all
denominations to reflect the fact that we are starting a new time step.
Du=u_init-u0
Dv=gamma*Du/(beta*h)-gamma*v0/beta+h*(1.0-0.5*gamma/beta)*a0
u1=u0+Du ; v1=v0+Dv
k1,up=kt(u1,v1,up)
a1=(p(t1)-damp*v1-k*(u1-up))/mass
t0=t1; v0=v1; u0=u1 ; a0=a1 ; k0=k1 ; p0=p1

12

1.7.5 Plotting our results

we plot red crosses for the numericaly computed response and a continuous line for the results of
the analytical integration of the equation of motion.

In [31]: figure(8)
plot(time[::4],disp[::4],'xr')
plot(t_el, x_el, '-b',

t_y1, x_y1, '-r',
t_y2, x_y2, '-r',
t_e2, x_e2, '-b',
(0.6, 4.0), (x0-xy, x0-xy), '--y')

title("Continuous line: exact response.\n"+
"Red crosses: constant acceleration + MNR.\n")

xlabel("Time, s")
ylabel("Displacement, m");

13

	Exact Integration for an EP SDOF System
	Elastic response
	Plastic response
	An utility function

	The system parameters
	Derived quantities
	Load definition
	The actual computations
	Elastic, initial conditions, get system functions
	Yielding time is
	Forced response in elastic range is
	Preparing for EP response
	Elastic unloading

	Numerical solution
	Problem data
	Initialize the algorithm
	System state initialization
	Iteration
	Plotting our results

