Generalized Single Degree of Freedom Systems

PVD, Generalized Parameters, Rayleigh Quotient

Giacomo Boffi
http://intranet.dica.polimi.it/people/boffi-giacomo
Dipartimento di Ingegneria Civile Ambientale e Territoriale
Politecnico di Milano

March 24, 2020

```
Outline
Introductory Remarks
Generalized
SDOF
Giacomo Boffi
Assemblage of Rigid Bodies
Rigid Bodies
Rigid Bodies' Characteristics
Example
Continuous Systems
Introduction
PVD
Shape Functions?
Example
Vibration Analysis by Rayleigh's Method
Rayleigh Quotient Method
Selection of Mode Shapes
Refinement of Rayleigh's Estimates
```


Introductory Remarks

Introductory Remarks

Until now our SDOF's were described as composed by a single mass connected to a fixed reference by means of a spring and a damper. While the mass-spring is a useful representation, many different, more complex systems can be studied as SDOF systems, either exactly or under some simplifying assumption.

1 SDOF rigid body assemblages, where the flexibility is concentrated in a number of springs and dampers, can be studied, e.g., using the Principle of Virtual Displacements and the D'Alembert Principle.

2 simple structural systems can be studied, in an approximate manner, assuming a fixed pattern of displacements, whose amplitude (the single degree of freedom) varies with time.

Final Remarks on Generalised SDOF Systems

From the previous comments, it should be apparent that everything we have seen regarding the behaviour and the integration of the equation of motion of proper SDOF systems applies to rigid body assemblages and to SDOF models of flexible systems, provided that we have the means for determining the generalised properties of the dynamical systems under investigation.

Continuous

Section 2
Generalized
SDOF
Giacomo Boffi
Assemblage of Rigid Bodies

Introductory Remarks

Assemblage of Rigid Bodies
Rigid Bodies
Rigid Bodies' Characteristics
Example

Continuous Systems

Vibration Analysis by Rayleigh's Method

Assemblages of Rigid Bodies

■ planar, or bidimensional, rigid bodies, constrained to move in a plane,
■ the flexibility is concentrated in discrete elements, springs and dampers,
\square rigid bodies are connected to a fixed reference and to each other by means of springs, dampers and smooth, bilateral constraints (read hinges, double pendulums and rollers),
■ inertial forces are distributed forces, acting on each material point of each rigid

Generalized
SDOF
Giacomo Boffi

Rigid Bodies
Rigid Bodies
Characteristics
Example
Continuous
Rayleigh
Quotient body, their resultant can be described by

■ an inertial force applied to the centre of mass of the body, the product of the acceleration vector of the centre of mass itself and the total mass of the rigid body, $M=\int \mathrm{d} m$
■ an inertial couple, the product of the angular acceleration and the moment of inertia J of the rigid body, $J=\int\left(x^{2}+y^{2}\right) \mathrm{d} m$.

Rigid Bar

$$
\begin{aligned}
& \text { Unit mass } \quad \bar{m}=\text { constant, } \\
& \text { Length } L \text {, } \\
& \text { Centre of Mass } \quad x_{G}=L / 2 \text {, } \\
& \text { Total Mass } \quad m=\bar{m} L \text {, } \\
& \text { Moment of Inertia } \quad J=m \frac{L^{2}}{12}=\bar{m} \frac{L^{3}}{12}
\end{aligned}
$$

Rigid Rectangle

Generalized
SDOF
Giacomo Boffi

Intro
Rigid Bodies
Rigid Bodies
Characteristics
Continuous
Rayleigh
Quotient

$$
\begin{aligned}
\text { Unit mass } & \gamma=\text { constant, } \\
\text { Sides } & a, b \\
\text { Centre of Mass } & x_{G}=a / 2, \quad y_{G}=b / 2 \\
\text { Total Mass } & m=\gamma a b, \\
\text { Moment of Inertia } & J=m \frac{a^{2}+b^{2}}{12}=\gamma \frac{a^{3} b+a b^{3}}{12}
\end{aligned}
$$

Rigid Triangle

For a right triangle.

Rayleigh

$$
\begin{aligned}
\text { Unit mass } & \gamma=\text { constant, } \\
\text { Sides } & a, b \\
\text { Centre of Mass } & x_{G}=a / 3, \quad y_{G}=b / 3 \\
\text { Total Mass } & m=\gamma a b / 2, \\
\text { Moment of Inertia } & J=m \frac{a^{2}+b^{2}}{18}=\gamma \frac{a^{3} b+a b^{3}}{36}
\end{aligned}
$$

Rigid Oval

When $a=b=D=2 R$ the oval is a circle:

$$
m=\gamma \pi R^{2}, \quad J=m \frac{R^{2}}{2}=\gamma \frac{\pi R^{4}}{2} .
$$

trabacolo1

The mass of the left bar is $m_{1}=\bar{m} 4 a$ and its moment of inertia is
$J_{1}=m_{1} \frac{(4 a)^{2}}{12}=4 a^{2} m_{1} / 3$.
The maximum value of the external load is $P_{\max }=P 4 a / a=4 P$ and the resultant of triangular load is $R=4 P \times 4 a / 2=8 P a$

Forces and Virtual Displacements

Generalized
SDOF
Giacomo Boffi

Intro
Rigid Bodies
Rigid Bodies
Rigid Bodies
Characteristics
Example
Continuous
Rayleigh Quotient

$$
\begin{gathered}
u=7 a-4 a \cos \theta_{1}-3 a \cos \theta_{2}, \quad \delta u=4 a \sin \theta_{1} \delta \theta_{1}+3 a \sin \theta_{2} \delta \theta_{2} \\
\delta \theta_{1}=\delta Z /(4 a), \quad \delta \theta_{2}=\delta Z /(3 a) \\
\sin \theta_{1} \approx Z /(4 a), \quad \sin \theta_{2} \approx Z /(3 a) \\
\delta u=\left(\frac{1}{4 a}+\frac{1}{3 a}\right) Z \delta Z=\frac{7}{12 a} Z \delta Z
\end{gathered}
$$

Principle of Virtual Displacements

$\delta W_{1}=-m_{1} \frac{\ddot{Z}}{2} \frac{\delta Z}{2}-J_{1} \frac{\ddot{Z}}{4 a} \frac{\delta Z}{4 a}-m_{2} \frac{2 \ddot{Z}}{3} \frac{2 \delta Z}{3}-J_{2} \frac{\ddot{Z}}{3 a} \frac{\delta Z}{3 a}=-\left(\frac{m_{1}}{4}+4 \frac{m_{2}}{9}+\frac{J_{1}}{16 a^{2}}+\frac{J_{2}}{9 a^{2}}\right) \ddot{Z} \delta Z$

$$
\delta W_{\mathrm{D}}=-c_{1} \frac{\dot{Z}}{4} \frac{\delta Z}{4}--c_{2} Z \delta Z=-\left(c_{2}+c_{1} / 16\right) \dot{Z} \delta Z
$$

$$
\delta W_{\mathrm{S}}=-k_{1} \frac{3 Z}{4} \frac{3 \delta Z}{4}-k_{2} \frac{Z}{3} \frac{\delta Z}{3}=-\left(\frac{9 k_{1}}{16}+\frac{k_{2}}{9}\right) Z \delta Z
$$

$$
\delta W_{\mathrm{Ext}}=8 P a f(t) \frac{2 \delta Z}{3}+N \frac{7}{12 a} Z \delta Z
$$

Principle of Virtual Displacements

For a rigid body in condition of equilibrium the total virtual work must be equal to zero
Generalized
SDOF
Giacomo Boffi

$$
\delta W_{\mathrm{I}}+\delta W_{\mathrm{D}}+\delta W_{\mathrm{S}}+\delta W_{\mathrm{Ext}}=0
$$

Substituting our expressions of the virtual work contributions and simplifying δZ, the equation of equilibrium is

$$
\begin{aligned}
& \left(\frac{m_{1}}{4}+4 \frac{m_{2}}{9}+\frac{J_{1}}{16 a^{2}}+\frac{J_{2}}{9 a^{2}}\right) \ddot{Z}+ \\
& \\
& +\left(c_{2}+c_{1} / 16\right) \dot{Z}+\left(\frac{9 k_{1}}{16}+\frac{k_{2}}{9}\right) Z= \\
& 8 P a f(t) \frac{2}{3}+N \frac{7}{12 a} Z
\end{aligned}
$$

Principle of Virtual Displacements

Generalized
SDOF
Giacomo Boffi

$$
\begin{aligned}
& m^{\star}=\frac{1}{4} m_{1}+\frac{4}{9} 9 m_{2}+\frac{1}{16 a^{2}} J_{1}+\frac{1}{9 a^{2}} J_{2}, \\
& \qquad c^{\star}=\frac{1}{16} c_{1}+c_{2}, \quad k^{\star}=\frac{9}{16} k_{1}+\frac{1}{9} k_{2}-\frac{7}{12 a} N, \quad p^{\star}=\frac{16}{3} P a . \\
& \qquad \begin{array}{l}
\text { It is worth writing down the ex- } \\
\text { pression of } k^{\star} \text { : }
\end{array} k^{\star}=\frac{9 k_{1}}{16}+\frac{k_{2}}{9}-\frac{7}{12 a} N \\
& \text { Geometrical stiffness }
\end{aligned}
$$

Section 3

Continuous Systems

nen

Introductory Remarks

Assemblage of Rigid Bodies

Continuous Systems

Introduction
PVD
Shape Functions?
Example
Vibration Analysis by Rayleigh's Method

Let's start with an example...

Consider a cantilever, with varying properties \bar{m} and $E J$, subjected to a dynamic load that is function of both time t and position x,

$$
p=p(x, t)
$$

Even the transverse displacements v will be function of time and position,

$$
v=v(x, t)
$$

and because the inertial forces depend on $\ddot{v}=\partial^{2} v / \partial t^{2}$ and the elastic forces on $v^{\prime \prime}=\partial^{2} v / \partial x^{2}$ the equation of dynamic equilibrium must be written in terms of a partial derivatives differential equation.

... and an hypothesis

To study the previous problem, we introduce an approximate model by the following hypothesis,

$$
v(x, t)=\Psi(x) Z(t)
$$

that is, the hypothesis of separation of variables
Note that $\Psi(x)$, the shape function, is adimensional, while $Z(t)$ is dimensionally a generalised displacement, usually chosen to characterise the structural behaviour. In our example we can use the displacement of the tip of the chimney, thus implying that $\Psi(H)=1$ because

$$
\begin{aligned}
Z(t) & =v(H, t) \quad \text { and } \\
v(H, t) & =\Psi(H) Z(t)
\end{aligned}
$$

Principle of Virtual Displacements

For a flexible system, the PoVD states that, at equilibrium,

$$
\delta W_{\mathrm{E}}=\delta W_{\mathrm{I}} .
$$

The virtual work of external forces can be easily computed, the virtual work of internal forces is usually approximated by the virtual work done by bending moments, that is

$$
\delta W_{1} \approx \int M \delta \chi
$$

where χ is the curvature and $\delta \chi$ the virtual increment of curvature.

δW_{E}

The external forces are $p(x, t), N$ and the forces of inertia f_{1}; we have, by separation of variables, that $\delta v=\Psi(x) \delta Z$ and we can write

$$
\begin{aligned}
\delta W_{\mathrm{p}} & =\int_{0}^{H} p(x, t) \delta v \mathrm{~d} x=\left[\int_{0}^{H} p(x, t) \Psi(x) \mathrm{d} x\right] \delta Z=p^{\star}(t) \delta Z \\
\delta W_{\text {Inertia }} & =\int_{0}^{H}-\bar{m}(x) \ddot{v} \delta v \mathrm{~d} x=\int_{0}^{H}-\bar{m}(x)(\Psi(x) \ddot{Z})(\Psi(x) \delta Z) \mathrm{d} x \\
& =\left[\int_{0}^{H}-\bar{m}(x) \Psi^{2}(x) \mathrm{d} x\right] \ddot{Z}(t) \delta Z=m^{\star} \ddot{Z} \delta Z .
\end{aligned}
$$

The virtual work done by the axial force deserves a separate treatment...

δW_{N}

The virtual work of N is $\delta W_{N}=N \delta u$ where δu is the variation of the vertical displacement of the top of the chimney.
We start computing the vertical displacement of the top of the chimney in terms of the rotation of the axis line, $\phi \approx \Psi^{\prime}(x) Z(t)$,

$$
u(t)=H-\int_{0}^{H} \cos \phi \mathrm{~d} x=\int_{0}^{H}(1-\cos \phi) \mathrm{d} x
$$

substituting the well known approximation $\cos \phi \approx 1-\frac{\phi^{2}}{2}$ in the above equation we have

$$
\begin{aligned}
& u(t)=\int_{0}^{H} \frac{\phi^{2}}{2} \mathrm{~d} x=\int_{0}^{H} \frac{\Psi^{\prime 2}(x) Z^{2}(t)}{2} \mathrm{~d} x \Rightarrow \\
& \Rightarrow \quad \delta u=\int_{0}^{H} \Psi^{\prime 2}(x) Z(t) \delta Z \mathrm{~d} x=\int_{0}^{H} \Psi^{\prime 2}(x) \mathrm{d} x Z \delta Z
\end{aligned}
$$

and

$$
\delta W_{N}=\left[\int_{0}^{H} \Psi^{\prime 2}(x) \mathrm{d} x N\right] Z \delta Z=k_{G}^{\star} Z \delta Z
$$

$\delta W_{\text {Int }}$

Approximating the internal work with the work done by bending moments, for an infinitesimal slice of beam we write

$$
\mathrm{d} W_{\mathrm{Int}}=\frac{1}{2} M v "(x, t) \mathrm{d} x=\frac{1}{2} M \Psi "(x) Z(t) \mathrm{d} x
$$

with $M=E J(x) v^{\prime \prime}(x)$

$$
\delta\left(\mathrm{d} W_{\mathrm{Int}}\right)=E J(x) \Psi^{{ }^{2}}(x) Z(t) \delta Z \mathrm{~d} x
$$

integrating

$$
\delta W_{\mathrm{Int}}=\left[\int_{0}^{H} E J(x) \Psi^{\mathrm{n}} 2(x) \mathrm{d} x\right] Z \delta Z=k^{\star} Z \delta Z
$$

Remarks

■ the shape function must respect the geometrical boundary conditions of the
Generalized
SDOF
Giacomo Boffi problem, i.e., both

$$
\Psi_{1}=x^{2} \quad \text { and } \quad \Psi_{2}=1-\cos \frac{\pi x}{2 H}
$$

are accettable shape functions for our example, as $\Psi_{1}(0)=\Psi_{2}(0)=0$ and $\Psi_{1}^{\prime}(0)=\Psi_{2}^{\prime}(0)=0$

- better results are obtained when the second derivative of the shape function at least resembles the typical distribution of bending moments in our problem, so that between

$$
\Psi_{1}^{\prime \prime}=\text { constant } \quad \text { and } \quad \Psi_{2}^{\prime \prime}=\frac{\pi^{2}}{4 H^{2}} \cos \frac{\pi x}{2 H}
$$

the second choice is preferable.

Remarks

Giacomo Boffi

Example

Using $\Psi(x)=1-\cos \frac{\pi x}{2 H}$, with $\bar{m}=$ constant and $E J=$ constant, with a load

$$
\begin{aligned}
m^{\star} & =\bar{m} \int_{0}^{H}\left(1-\cos \frac{\pi x}{2 H}\right)^{2} \mathrm{~d} x=\bar{m}\left(\frac{3}{2}-\frac{4}{\pi}\right) H \\
k^{\star} & =E J \frac{\pi^{4}}{16 H^{4}} \int_{0}^{H} \cos ^{2} \frac{\pi x}{2 H} \mathrm{~d} x=\frac{\pi^{4}}{32} \frac{E J}{H^{3}} \\
k_{G}^{\star} & =N \frac{\pi^{2}}{4 H^{2}} \int_{0}^{H} \sin ^{2} \frac{\pi x}{2 H} \mathrm{~d} x=\frac{\pi^{2}}{8 H} N \\
p_{g}^{\star} & =-\bar{m} \ddot{v}_{g}(t) \int_{0}^{H} 1-\cos \frac{\pi x}{2 H} \mathrm{~d} x=-\left(1-\frac{2}{\pi}\right) \bar{m} H \ddot{v}_{g}(t)
\end{aligned}
$$

Section 4

Vibration Analysis by Rayleigh's Method

Continuous Systems

Vibration Analysis by Rayleigh's Method
Rayleigh Quotient Method
Selection of Mode Shapes
Refinement of Rayleigh's Estimates

Vibration Analysis

Generalized
SDOF
Giacomo Boffi

Rigid Bodies
Continuous
Rayleigh Quotient Rayleigh Quotient Shapes Refinement

■ A different approach, proposed by Lord Rayleigh, starts from different premises to give the same results but the Rayleigh's Quotient method is important because it offers a better understanding of the vibrational behaviour, eventually leading to successive refinements of the first estimate of ω^{2}.

Rayleigh's Quotient Method

Our focus will be on the free vibration of a flexible, undamped system.
■ inspired by the free vibrations of a proper SDOF we write

- the displacement and the velocity are in quadrature: when v is at its maximum $\dot{v}=0$, hence $V=V_{\text {max }}, T=0$ and when \dot{v} is at its maximum it is $v=0$, hence $V=0, T=T_{\max }$,

■ disregarding damping, the energy of the system is constant during free vibrations,

$$
V_{\max }+0=0+T_{\max } \quad \Rightarrow \quad V_{\max }=T_{\max }
$$

Rayleigh' s Quotient Method

Now we write the expressions for $V_{\max }$ and $T_{\max }$,

$$
\begin{aligned}
& V_{\max }=\frac{1}{2} Z_{0}^{2} \int_{S} E J(x) \Psi^{\prime \prime 2}(x) \mathrm{d} x \\
& T_{\max }=\frac{1}{2} \omega^{2} Z_{0}^{2} \int_{S} \bar{m}(x) \Psi^{2}(x) \mathrm{d} x
\end{aligned}
$$

equating the two expressions and solving for ω^{2} we have

$$
\omega^{2}=\frac{\int_{S} E J(x) \Psi^{\prime \prime 2}(x) \mathrm{d} x}{\int_{S} \bar{m}(x) \Psi^{2}(x) \mathrm{d} x}
$$

Recognizing the expressions we found for k^{\star} and m^{\star} we could question the utility of Rayleigh's Quotient...

Rayleigh's Quotient Method

■ in Rayleigh's method we know the specific time dependency of the inertial forces

$$
f_{1}=-\bar{m}(x) \ddot{v}=\bar{m}(x) \omega^{2} Z_{0} \Psi(x) \sin \omega t
$$

f_{1} has the same shape we use for displacements.
■ if Ψ were the real shape assumed by the structure in free vibrations, the displacements v due to a loading $f_{1}=\omega^{2} \bar{m}(x) \Psi(x) Z_{0}$ should be proportional to $\Psi(x)$ through a constant factor, with equilibrium respected in every point of the structure during free vibrations.

- starting from a shape function $\Psi_{0}(x)$, a new shape function Ψ_{1} can be determined normalizing the displacements due to the inertial forces associated with $\Psi_{0}(x), f_{1}=\bar{m}(x) \Psi_{0}(x)$,
■ we are going to demonstrate that the new shape function is a better approximation of the true mode shape

Selection of mode shapes

Given different shape functions Ψ_{i} and considering the true shape of free vibration Ψ, in the former cases equilibrium is not respected by the structure itself. To keep inertia induced deformation proportional to Ψ_{i} we must consider the presence of additional elastic constraints. This leads to the following considerations

- the frequency of vibration of a structure with additional constraints is higher than the true natural frequency,
■ the criterium to discriminate between different shape functions is: better shape functions give lower estimates of the natural frequency, the true natural frequency being a lower bound of all estimates.

Selection of mode shapes 2

In general the selection of trial shapes goes through two steps,
1 the analyst considers the flexibilities of different parts of the structure and the
presence of symmetries to devise an approximate shape,
2 the structure is loaded with constant loads directed as the assumed
of course a little practice helps a lot in the the choice of a proper pattern of loading...

Selection of mode shapes 3

Refinement R_{00}

Choose a trial function $\Psi^{(0)}(x)$ and write

$$
\begin{aligned}
v^{(0)} & =\Psi^{(0)}(x) Z^{(0)} \sin \omega t \\
V_{\max } & =\frac{1}{2} Z^{(0) 2} \int E J \Psi^{(0) \prime \prime 2} \mathrm{~d} x \\
T_{\max } & =\frac{1}{2} \omega^{2} Z^{(0) 2} \int \bar{m} \Psi^{(0) 2} \mathrm{~d} x
\end{aligned}
$$

our first estimate R_{00} of ω^{2} is

$$
\omega^{2}=\frac{\int E J \Psi^{(0) \prime^{\prime 2}} \mathrm{~d} x}{\int \bar{m} \Psi^{(0) 2} \mathrm{~d} x}
$$

Refinement R_{01}

We try to give a better estimate of $V_{\max }$ computing the external work done by the

$$
p^{(0)}=\omega^{2} \bar{m}(x) v^{(0)}=Z^{(0)} \omega^{2} \Psi^{(0)}(x)
$$

where we write $\bar{Z}^{(1)}$ because we need to keep the unknown ω^{2} in evidence.
The maximum strain energy is

$$
V_{\max }=\frac{1}{2} \int p^{(0)} v^{(1)} \mathrm{d} x=\frac{1}{2} \omega^{4} Z^{(0)} \bar{Z}^{(1)} \int \bar{m}(x) \Psi^{(0)} \Psi^{(1)} \mathrm{d} x
$$

Equating to our previus estimate of $T_{\max }$ we find the R_{01} estimate

$$
\omega^{2}=\frac{Z^{(0)}}{\bar{Z}(1)} \frac{\int \bar{m}(x) \Psi^{(0)} \Psi^{(0)} \mathrm{d} x}{\int \bar{m}(x) \Psi^{(0)} \Psi^{(1)} \mathrm{d} x}
$$

Refinement R_{11}

With little additional effort it is possible to compute $T_{\max }$ from $v^{(1)}$:

$$
T_{\max }=\frac{1}{2} \omega^{2} \int \bar{m}(x) v^{(1) 2} \mathrm{~d} x=\frac{1}{2} \omega^{6} \bar{Z}^{(1) 2} \int \bar{m}(x) \Psi^{(1) 2} \mathrm{~d} x
$$

equating to our last approximation for $V_{\max }$ we have the R_{11} approximation to the frequency of vibration,

$$
\omega^{2}=\frac{Z^{(0)}}{\bar{Z}^{(1)}} \frac{\int \bar{m}(x) \Psi^{(0)} \Psi^{(1)} \mathrm{d} x}{\int \bar{m}(x) \Psi^{(1)} \Psi^{(1)} \mathrm{d} x}
$$

Of course the procedure can be extended to compute better and better estimates of ω^{2} but usually the refinements are not extended beyond R_{11}, because it would be contradictory with the quick estimate nature of the Rayleigh's Quotient method and also because R_{11} estimates are usually very good ones.
Nevertheless, we recognize the possibility of itereatively computing better and better estimates opens a world of new opportunities.

Refinement Example

Giacomo Boffi

Intro

Rigid Bodies
Continuous
Rayleigh
Quotient
shapes

$$
\begin{gathered}
T=\frac{1}{2} \omega^{2} \times 4.5 \times m Z_{0}^{2} \\
V=\frac{1}{2} \times 1 \times 3 k Z_{0}^{2} \\
\omega^{2}=\frac{3}{9 / 2} \frac{k}{m}=\frac{2}{3} \frac{k}{m}
\end{gathered}
$$

$$
\begin{array}{rlrl}
v^{(1)}=\frac{15}{4} \frac{m}{k} \omega^{2} \Psi^{(1)} & V^{(1)} & =\frac{1}{2} m \frac{15}{4} \frac{m}{k} \omega^{4}(1+33 / 30+4 / 5) \\
& =\frac{1}{2} m \frac{15}{4} \frac{m}{k} \omega^{4} \frac{87}{30} \\
\bar{Z}^{(1)}=\frac{15}{4} \frac{m}{k} & \omega^{2} & =\frac{\frac{9}{2} m}{m \frac{87}{8} \frac{m}{k}}=\frac{12}{29} \frac{k}{m}=0.4138 \frac{k}{m}
\end{array}
$$

