Multi Degrees of Freedom Systems
 MDOF

Giacomo Boffi
http://intranet.dica.polimi.it/people/boffi-giacomo

Dipartimento di Ingegneria Civile Ambientale e Territoriale
Politecnico di Milano
March 27, 2020

Outline

An ExampleSystems
The Equation of Motion is a System of Linear Differential Equations
Matrices are Linear OperatorsGiacomo Boffi
Properties of Structural Matrices
An example
The Homogeneous ProblemThe Homogeneous Equation of MotionEigenvalues and EigenvectorsEigenvectors are Orthogonal
Modal Analysis
Eigenvectors are a base
EoM in Modal Coordinates
Initial Conditions
Examples
2 DOF System

Section 1
 Introductory Remarks

Introductory Remarks

An Example
The Equation of Motion is a System of Linear Differential Equations
Matrices are Linear Operators
Properties of Structural Matrices
Introduction
An Example
The Equation of
Motion
Matrices are Linear Operators

Properties of Structural Matrices An example

An example

Introductory Remarks

Consider an undamped system with two masses and two degrees of freedom.

Multi DoF

An Example
The Equation of
Motion
Matrices are Linear Operators

Properties of Structural Matrices
An example
The
Homogeneous Problem

Modal Analysis

Introductory Remarks

We can separate the two masses, single out the spring forces and, using the D'Alembert Principle, the inertial forces and, finally. write an equation of dynamic equilibrium for each mass.

The equation of motion of a 2DOF system

With some little rearrangement we have a system of two linear differential equations in two variables, $x_{1}(t)$ and $x_{2}(t)$:

Matrices are Linea Operators

$$
\left\{\begin{array}{l}
m_{1} \ddot{x}_{1}+\left(k_{1}+k_{2}\right) x_{1}-k_{2} x_{2}=p_{1}(t), \\
m_{2} \ddot{x}_{2}-k_{2} x_{1}+\left(k_{2}+k_{3}\right) x_{2}=p_{2}(t) .
\end{array}\right.
$$

The equation of motion of a 2DOF system

Introducing the loading vector \mathbf{p}, the vector of inertial forces \mathbf{f}_{I} and the vector of elastic forces \mathbf{f}_{S},

$$
\mathbf{p}=\left\{\begin{array}{l}
p_{1}(t) \\
p_{2}(t)
\end{array}\right\}, \quad \mathbf{f}_{I}=\left\{\begin{array}{l}
f_{I, 1} \\
f_{I, 2}
\end{array}\right\}, \quad \mathbf{f}_{S}=\left\{\begin{array}{l}
f_{S, 1} \\
f_{S, 2}
\end{array}\right\}
$$

we can write a vectorial equation of equilibrium:

$$
\mathbf{f}_{\mathbf{I}}+\mathbf{f}_{\mathbf{S}}=\mathbf{p}(t)
$$

$\mathbf{f}_{S}=\mathbf{K} \mathbf{x}$

It is possible to write the linear relationship between \mathbf{f}_{S} and the vector of displacements $\mathbf{x}=\left\{x_{1} x_{2}\right\}^{T}$ in terms of a matrix product, introducing the so called stiffness matrix \mathbf{K}.

Introduction
An Example
The Equation of Motion
Matrices are Linear Operators

Properties of
Structural Matrices
An example

$\mathbf{f}_{S}=\mathbf{K} \mathbf{x}$

It is possible to write the linear relationship between \mathbf{f}_{S} and the vector of displacements $\mathbf{X}=\left\{x_{1} x_{2}\right\}^{T}$ in terms of a matrix product, introducing the so called stiffness matrix K.
In our example it is

$$
\mathbf{f}_{S}=\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}+k_{3}
\end{array}\right] \mathbf{x}=\mathbf{K} \mathbf{x}
$$

$\mathbf{f}_{S}=\mathbf{K} \mathbf{x}$

It is possible to write the linear relationship between \mathbf{f}_{S} and the vector of displacements $\mathbf{x}=\left\{x_{1} x_{2}\right\}^{T}$ in terms of a matrix product, introducing the so called stiffness matrix K.
In our example it is
Introduction
An Example
The Equation of Motion
Matrices are Linear Operators
Properties of Structural Matrices

$$
\mathbf{f}_{S}=\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}+k_{3}
\end{array}\right] \mathbf{x}=\mathbf{K} \mathbf{x}
$$

An example

The stiffness matrix \mathbf{K} has a number of rows equal to the number of elastic forces, i.e., one force for each DOF and a number of columns equal to the number of the DOF. The stiffness matrix \mathbf{K} is hence a square matrix

$\mathbf{f}_{l}=\mathbf{M} \ddot{\mathbf{x}}$

Analogously, introducing the mass matrix \mathbf{M} that, for our example, is

$$
\mathbf{M}=\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]
$$

we can write

$$
\mathbf{f}_{I}=\mathbf{M} \ddot{\mathbf{x}}
$$

Also the mass matrix \mathbf{M} is a square matrix, with number of rows and columns equal to the number of DOF's.

Matrix Equation

Finally it is possible to write the equation of motion in matrix format:

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K} \mathbf{x}=\mathbf{p}(t) .
$$

Introduction
An Example
The Equation of
Motion
Matrices are Linear Operators

Properties of
Structural Matrices
An example

Homogeneous Problem

Modal Analysis

Matrix Equation

Finally it is possible to write the equation of motion in matrix format:

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K} \mathbf{x}=\mathbf{p}(t) .
$$

Of course it is possible to take into consideration also the damping forces, taking into account the velocity vector $\dot{\mathbf{x}}$ and introducing a damping matrix \mathbf{C} too, so that we can eventually write

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{C} \dot{\mathbf{x}}+\mathbf{K} \mathbf{x}=\mathbf{p}(t) .
$$

Introduction
An Example
The Equation of Motion
Matrices are Linear Operators

Properties of
Structural Matrices
An example

Homogeneous Problem

Matrix Equation

Finally it is possible to write the equation of motion in matrix format:

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K} \mathbf{x}=\mathbf{p}(t) .
$$

Of course it is possible to take into consideration also the damping forces, taking into account the velocity vector $\dot{\mathbf{x}}$ and introducing a damping matrix \mathbf{C} too, so that we can eventually write

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{C} \dot{\mathbf{x}}+\mathbf{K} \mathbf{x}=\mathbf{p}(t) .
$$

But today we are focused on undamped systems...

Properties of K

■ \mathbf{K} is symmetrical.
Matrices are Linear Operators

Properties of Structural Matrices
An example
The
Homogeneous Problem

Properties of K

■ K is symmetrical.
Properties of Structural Matrices
$\square \mathbf{K}$ is a positive definite matrix.

Matrices are Linear

An example
The
Homogeneous Problem

Properties of K: symmetry

The elastic force exerted on mass i due to an unit displacement of mass $j, f_{S, i}=k_{i j}$ is equal to the force $k_{j i}$ exerted on mass j due to an unit diplacement of mass i, in virtue of Betti's theorem (also known as Maxwell-Betti reciprocal work theorem).

Properties of K: symmetry

The elastic force exerted on mass i due to an unit displacement of mass $j, f_{S, i}=k_{i j}$ is equal to the force $k_{j i}$ exerted on mass j due to an unit diplacement of mass i, in virtue of Betti's theorem (also known as Maxwell-Betti reciprocal work theorem).

The strain energy associated with an imposed displacement vector \mathbf{x} is $V=1 / 2 \mathbf{X}^{T} \cdot \mathbf{f}$ where f is the vector of the elastic forces that cause the displacement, so we can write

$$
V=1 / 2 \mathbf{x}^{T} \mathbf{K} \mathbf{x}
$$

Introduction
An Example
The Equation of
Motion
Matrices are Linear Operators

Properties of Structural Matrices
An example

The
Homogeneous Problem

Modal Analysis Examples
and (2) the strain energy associated with first applying \mathbf{x}_{b} and later \mathbf{x}_{a} :

$$
V_{b a}=1 / 2 \mathbf{x}_{b}^{T} \mathbf{K} \mathbf{x}_{b}+1 / 2 \mathbf{x}_{a}^{T} \mathbf{K} \mathbf{x}_{a}+\mathbf{x}_{a}^{T} \mathbf{K} \mathbf{x}_{b} .
$$

Because $V_{a b}=V_{b a}$ (the final deformed configuration is the same) it is $\mathbf{x}_{b}^{T} \mathbf{K} \mathbf{x}_{a}=\mathbf{x}_{a}^{T} \mathbf{K} \mathbf{x}_{b}$ and, because $\mathbf{x}_{b}^{T} \mathbf{K} \mathbf{x}_{a}=\mathbf{x}_{a}^{T} \mathbf{K}^{T} \mathbf{x}_{b}$ we can conclude that $\mathbf{K}^{T}=\mathbf{K}$, i.e., \mathbf{K} is a symmetrical matrix.

Properties of K: definite positivity

The strain energy V for a discrete system is

$$
V=\frac{1}{2} \mathbf{x}^{T} \mathbf{f}_{S}
$$

and expressing \mathbf{f}_{S} in terms of \mathbf{K} and \mathbf{x} we have

$$
V=\frac{1}{2} \mathbf{x}^{T} \mathbf{K} \mathbf{x},
$$

and because the strain energy is positive for $\mathbf{x} \neq \mathbf{0}$ it follows that \mathbf{K} is definite positive.

Properties of M

Restricting our discussion to systems whose degrees of freedom are the displacements of a set of discrete masses, we have that the mass matrix is a diagonal matrix, with all its diagonal elements greater than zero. Such a matrix is symmetrical and definite positive.
Both the mass and the stiffness matrix are symmetrical and definite positive.

The Equation of Motion Operators

Properties of M

Restricting our discussion to systems whose degrees of freedom are the displacements of a set of discrete masses, we have that the mass matrix is a diagonal matrix, with all its diagonal elements greater than zero. Such a matrix is symmetrical and definite positive.
Both the mass and the stiffness matrix are symmetrical and definite positive.

Note that the kinetic energy for a discrete system can be written

$$
T=\frac{1}{2} \dot{\mathbf{x}}^{T} \mathbf{M} \dot{\mathbf{x}} .
$$

Generalisation of previous results

The findings in the previous two slides can be generalised to the structural matrices of generic structural systems, with two main exceptions.

Introduction
An Example
The Equation of
Motion
Matrices are Linear Operators

Properties of Structural Matrices
An example

Homogeneous Problem

Generalisation of previous results

The findings in the previous two slides can be generalised to the structural matrices of generic structural systems, with two main exceptions.

1 For a general structural system, in which not all DOFs are related to a mass, M could be semi-definite positive, that is for some particular displacement vector the kinetic energy is zero.

Introduction
An Example
The Equation of Motion
Matrices are Lineat Operators

Properties o Structural Matrice
An example

Generalisation of previous results

The findings in the previous two slides can be generalised to the structural matrices of generic structural systems, with two main exceptions.
1 For a general structural system, in which not all DOFs are related to a mass, M could be semi-definite positive, that is for some particular displacement vector the kinetic energy is zero.

2 For a general structural system subjected to axial loads, due to the presence of geometrical stiffness it is possible that, for some particular configuration of the axial loads, a displacement vector exists, for which the strain energy is zero and

Introduction
An Example
The Equation of Motion
Matrices are Linear Operators

Properties of Structural Matrices
An example consequently the matrix \mathbf{K} is semi-definite positive.

Multi DoF
Systems
Giacomo Boffi

Introduction
An Example
The Equation of
Motion
Matrices are Linear Operators

Properties of Structural Matrices
An example
The
Homogeneous Problem

Modal Analysis
Examples

Steady-state solution: graphical statement of the problem

$$
\begin{gathered}
k_{1}=2 k, \quad k_{2}=k ; \quad m_{1}=2 m, \quad m_{2}=1 m ; \\
p(t)=p_{0} \sin \omega t .
\end{gathered}
$$

The equations of motion

Giacomo Boffi

Introduction
An Example
The Equation of
Motion
Matrices are Linear Operators

Properties of Structural Matrices
An example

Homogeneous Problem

$$
\begin{aligned}
m_{1} \ddot{x}_{1}+k_{1} x_{1}+k_{2}\left(x_{1}-x_{2}\right) & =p_{0} \sin \omega t \\
m_{2} \ddot{x}_{2}+k_{2}\left(x_{2}-x_{1}\right) & =0
\end{aligned}
$$

Steady-state solution: graphical statement of the problem

$$
\begin{aligned}
m_{1} \ddot{x}_{1}+k_{1} x_{1}+k_{2}\left(x_{1}-x_{2}\right) & =p_{0} \sin \omega t \\
m_{2} \ddot{x}_{2}+k_{2}\left(x_{2}-x_{1}\right) & =0
\end{aligned}
$$

... but we prefer the matrix notation ...

The steady state solution

We prefer the matrix notation because we can find the steady-state response of a SDOF system exactly as we found the s-s solution for a SDOF system. Substituting $\mathbf{x}(t)=\xi \sin \omega t$ in the equation of motion and simplifying $\sin \omega t$,

$$
k\left[\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right] \xi-m \omega^{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \xi=p_{0}\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}
$$

The steady state solution

We prefer the matrix notation because we can find the steady-state response of a SDOF system exactly as we found the s-s solution for a SDOF system. Substituting $\mathbf{x}(t)=\xi \sin \omega t$ in the equation of motion and simplifying $\sin \omega t$,

$$
k\left[\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right] \xi-m \omega^{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \xi=p_{0}\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}
$$

The steady state solution

We prefer the matrix notation because we can find the steady-state response of a SDOF system exactly as we found the s-s solution for a SDOF system. Substituting $\mathbf{x}(t)=\xi \sin \omega t$ in the equation of motion and simplifying $\sin \omega t$,

$$
k\left[\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right] \xi-m \omega^{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \xi=p_{0}\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}
$$

$$
\left(\left[\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right]-\beta^{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\right) \xi=\left[\begin{array}{cc}
3-2 \beta^{2} & -1 \\
-1 & 1-\beta^{2}
\end{array}\right] \xi=\Delta_{\text {st }}\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} .
$$

The steady state solution

The determinant of the matrix of coefficients is

$$
\operatorname{Det}\left(\left[\begin{array}{cc}
3-2 \beta^{2} & -1 \\
-1 & 1-\beta^{2}
\end{array}\right]\right)=2 \beta^{4}-5 \beta^{2}+2
$$

but we'll find convenient to write the polynomial in β in terms of its roots

$$
\text { Det }=2 \times\left(\beta^{2}-1 / 2\right) \times\left(\beta^{2}-2\right) \text {. }
$$

Solving for $\xi / \Delta_{\text {st }}$ in terms of the inverse of the coefficient matrix gives

Giacomo Boffi

The Equation of Motion
Matrices are Linear Operators

Properties of Structural Matrices
An example

The steady state solution

The determinant of the matrix of coefficients is

$$
\operatorname{Det}\left(\left[\begin{array}{cc}
3-2 \beta^{2} & -1 \\
-1 & 1-\beta^{2}
\end{array}\right]\right)=2 \beta^{4}-5 \beta^{2}+2
$$

$$
\begin{aligned}
& \frac{\xi}{\Delta_{\mathrm{st}}}=\frac{1}{2\left(\beta^{2}-\frac{1}{2}\right)\left(\beta^{2}-2\right)}\left[\begin{array}{cc}
1-\beta^{2} & 1 \\
1 & 3-2 \beta^{2}
\end{array}\right]\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}=\frac{1}{2\left(\beta^{2}-\frac{1}{2}\right)\left(\beta^{2}-2\right)}\left\{\begin{array}{c}
1-\beta^{2} \\
1
\end{array}\right\} \rightarrow \\
& \mathbf{x}_{\mathrm{s}-\mathrm{s}}=\frac{\Delta_{\mathrm{st}}}{2\left(\beta^{2}-\frac{1}{2}\right)\left(\beta^{2}-2\right)}\left\{\begin{array}{c}
1-\beta^{2} \\
1
\end{array}\right\} \sin \omega t .
\end{aligned}
$$

The solution, graphically

Multi DoF
Systems
Giacomo Boffi
steady-state response for a 2 dof system, harmonic load

Introduction
An Example
The Equation of
Motion
Matrices are Linear Operators

Properties of
Structural Matrices
An example
The
Homogeneous Problem

Modal Analysis

Comment to the Steady State Solution

The steady state solution is

$$
\mathbf{x}_{\mathrm{s}-\mathrm{s}}=\Delta_{\mathrm{st}} \frac{1}{2\left(\beta^{2}-\frac{1}{2}\right)\left(\beta^{2}-2\right)}\left\{\begin{array}{c}
1-\beta^{2} \\
1
\end{array}\right\} \sin \omega t
$$

As it's apparent in the previous slide, we have two different values of the excitation frequency for which the dynamic amplification factor goes to infinity.

Comment to the Steady State Solution

The steady state solution is

$$
\mathbf{x}_{\mathrm{s}-\mathrm{s}}=\Delta_{\mathrm{st}} \frac{1}{2\left(\beta^{2}-\frac{1}{2}\right)\left(\beta^{2}-2\right)}\left\{\begin{array}{c}
1-\beta^{2} \\
1
\end{array}\right\} \sin \omega t
$$

As it's apparent in the previous slide, we have two different values of the excitation frequency for which the dynamic amplification factor goes to infinity.

For an undamped SDOF system, we had a single frequency of excitation that excites a resonant response, now for a two degrees of freedom system we have two different excitation frequencies that excite a resonant response.

Giacomo Boffi

Introduction
An Example
The Equation of Motion
Matrices are Linear Operators

Properties of Structural Matrices An example

Comment to the Steady State Solution

The steady state solution is

$$
\mathbf{x}_{\mathrm{s}-\mathrm{s}}=\Delta_{\mathrm{st}} \frac{1}{2\left(\beta^{2}-\frac{1}{2}\right)\left(\beta^{2}-2\right)}\left\{\begin{array}{c}
1-\beta^{2} \\
1
\end{array}\right\} \sin \omega t .
$$

As it's apparent in the previous slide, we have two different values of the excitation frequency for which the dynamic amplification factor goes to infinity.

For an undamped SDOF system, we had a single frequency of excitation that excites a resonant response, now for a two degrees of freedom system we have two different excitation frequencies that excite a resonant response.

Giacomo Boffi

Introduction
An Example
The Equation of Motion
Matrices are Linear Operators

Properties of Structural Matrices An example

We know how to compute a particular integral for a MDOF system (at least for a harmonic loading), what do we miss to be able to determine the integral of motion?

Section 2

The Homogeneous Problem

The
Homogeneous Problem Equation of Motion
Eigenvalues and Eigenvectors

Eigenvectors are Orthogonal

The Homogeneous Equation of Motion
Eigenvalues and Eigenvectors
Eigenvectors are Orthogonal

Modal Analysis

Homogeneous equation of motion

To understand the behaviour of a MDOF system, we have to study the homogeneous solution.

Let's start writing the homogeneous equation of motion,
$\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K x}=\mathbf{0}$.

The Homogeneous Equation of Motion
Eigenvalues and Eigenvectors Eigenvectors are Orthogonal

Homogeneous equation of motion

To understand the behaviour of a MDOF system, we have to study the homogeneous solution.
Let's start writing the homogeneous equation of motion,

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K} \mathbf{x}=\mathbf{0} .
$$

The solution, in analogy with the SDOF case, can be written in terms of a harmonic function of unknown frequency and, using the concept of separation of variables, of a constant vector, the so called shape vector $\boldsymbol{\psi}$:

$$
\mathbf{x}(t)=\boldsymbol{\psi}(A \sin \omega t+B \cos \omega t) \quad \Rightarrow \quad \ddot{\mathbf{x}}(t)=-\omega^{2} \mathbf{x}(t)
$$

Homogeneous equation of motion

To understand the behaviour of a MDOF system, we have to study the homogeneous solution.
Let's start writing the homogeneous equation of motion,

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K} \mathbf{x}=\mathbf{0} .
$$

The solution, in analogy with the SDOF case, can be written in terms of a harmonic function of unknown frequency and, using the concept of separation of variables, of a constant vector, the so called shape vector $\boldsymbol{\psi}$:

$$
\mathbf{x}(t)=\boldsymbol{\psi}(A \sin \omega t+B \cos \omega t) \quad \Rightarrow \quad \ddot{\mathbf{x}}(t)=-\omega^{2} \mathbf{x}(t)
$$

The
Homogeneous Problem

The Homogeneous Equation of Motion
Eigenvalues and Eigenvectors Eigenvectors are Orthogonal

Substituting in the equation of motion, we have

$$
\left(\mathbf{K}-\omega^{2} \mathbf{M}\right) \boldsymbol{\psi}(A \sin \omega t+B \cos \omega t)=\mathbf{0}
$$

Homogeneous equation of motion

To understand the behaviour of a MDOF system, we have to study the homogeneous solution.
Let's start writing the homogeneous equation of motion,

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K} \mathbf{x}=\mathbf{0} .
$$

The solution, in analogy with the SDOF case, can be written in terms of a harmonic function of unknown frequency and, using the concept of separation of variables, of a constant vector, the so called shape vector $\boldsymbol{\psi}$:

$$
\mathbf{x}(t)=\boldsymbol{\psi}(A \sin \omega t+B \cos \omega t) \quad \Rightarrow \quad \ddot{\mathbf{x}}(t)=-\omega^{2} \mathbf{x}(t)
$$

Substituting in the equation of motion, we have

$$
\left(\mathbf{K}-\omega^{2} \mathbf{M}\right) \boldsymbol{\psi}(A \sin \omega t+B \cos \omega t)=\mathbf{0}
$$

Eigenvalues

The previous equation must hold for every value of t, so it can be simplified removing the time
dependency:

$$
\left(\mathbf{K}-\omega^{2} \mathbf{M}\right) \boldsymbol{\psi}=\mathbf{0}
$$

The above equation, the EqUation of Free Vibrations, is a set of homogeneous linear equations, with unknowns ψ_{i} and whose coefficients depend on the parameter ω^{2}.

Giacomo Boffi

Eigenvalues

The previous equation must hold for every value of t, so it can be simplified removing the time

$$
\left(\mathbf{K}-\omega^{2} \mathbf{M}\right) \boldsymbol{\psi}=\mathbf{0}
$$

The above equation, the Equation of Free Vibrations, is a set of homogeneous linear equations, with unknowns ψ_{i} and whose coefficients depend on the parameter ω^{2}.
Speaking of homogeneous systems, we know that
■ there is always a trivial solution, $\boldsymbol{\psi}=\mathbf{0}$, and
■ non-trivial solutions are possible if the determinant of the matrix of coefficients is equal to zero,

$$
\operatorname{det}\left(\mathbf{K}-\omega^{2} \mathbf{M}\right)=0
$$

The
Homogeneous Problem

The Homogeneous Equation of Motion Eigenvalues and Eigenvectors

Eigenvectors are Orthogonal

Eigenvalues

The previous equation must hold for every value of t, so it can be simplified removing the time dependency:

$$
\left(\mathbf{K}-\omega^{2} \mathbf{M}\right) \boldsymbol{\psi}=\mathbf{0}
$$

The above equation, the Equation of Free Vibrations, is a set of homogeneous linear equations, with unknowns ψ_{i} and whose coefficients depend on the parameter ω^{2}.
Speaking of homogeneous systems, we know that

- there is always a trivial solution, $\boldsymbol{\psi}=\mathbf{0}$, and
- non-trivial solutions are possible if the determinant of the matrix of coefficients is equal to zero,

$$
\operatorname{det}\left(\mathbf{K}-\omega^{2} \mathbf{M}\right)=0
$$

The Eigenvalues of the MDOF system are the values of ω^{2} for which the above equation (the EqUATION OF Frequencies) is verified or, in other words, the frequencies of vibration associated with the shapes for which we have equilibrium:

$$
\mathbf{K} \boldsymbol{\psi}=\omega^{2} \mathbf{M} \boldsymbol{\psi} \Leftrightarrow \mathbf{f}_{S}=\mathbf{f}_{I} .
$$

Homogeneous Problem

The Homogeneous Equation of Motion Eigenvalues and Eigenvectors

Eigenvectors are Orthogonal

Eigenvalues, cont.

For a system with N degrees of freedom the expansion of $\operatorname{det}\left(\mathbf{K}-\omega^{2} \mathbf{M}\right)$ is an algebraic polynomial of degree N in ω^{2} that has N roots, these roots either real or complex conjugate.

In Dynamics of Structures those roots $\omega_{i}^{2}, i=1, \ldots, N$ are all real because the structural matrices are symmetric matrices.
Moreover, if both \mathbf{K} and \mathbf{M} are positive definite matrices (a condition that you can always enforce for a stable structural system) then all the roots, all the eigenvalues,

The
Homogeneous Problem

The Homogeneous Equation of Motion Eigenvalues and Eigenvectors

Eigenvectors are Orthogonal are strictly positive:

$$
\omega_{i}^{2} \geq 0, \quad \text { for } i=1, \ldots, N .
$$

Eigenvectors

Substituting one of the N roots ω_{i}^{2} in the characteristic equation,

$$
\left(\mathbf{K}-\omega_{i}^{2} \mathbf{M}\right) \boldsymbol{\psi}_{i}=\mathbf{0}
$$

the resulting system of $N-1$ linearly independent equations can be solved (except for a scale factor) for $\boldsymbol{\psi}_{i}$, the eigenvector corresponding to the eigenvalue ω_{i}^{2}.

Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the value of one of the components and compute the values of all the other $N-1$ components using the $N-1$ linearly indipendent equations.

Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the value of one of the components and compute the values of all the other $N-1$ components using the $N-1$ linearly indipendent equations.

It is common to impose to each eigenvector a normalisation with respect to the mass matrix, so that

$$
\boldsymbol{\psi}_{i}^{T} \mathbf{M} \boldsymbol{\psi}_{i}=m
$$

where m represents the unit mass.

Eigenvectors

The scale factor being arbitrary, you have to choose (arbitrarily) the value of one of the components and compute the values of all the other $N-1$ components using the $N-1$ linearly indipendent equations.

It is common to impose to each eigenvector a normalisation with respect to the mass matrix, so that

$$
\boldsymbol{\psi}_{i}^{T} \mathbf{M} \boldsymbol{\psi}_{i}=m
$$

where m represents the unit mass.

Giacomo Boffi

Please understand clearly that, substituting different eigenvalues in the equation of free vibrations, you have different linear systems, leading to different eigenvectors.

Initial Conditions

The most general expression (the general integral) for the displacement of a homogeneous system is

$$
\mathbf{x}(t)=\sum_{i=1}^{N} \boldsymbol{\psi}_{i}\left(A_{i} \sin \omega_{i} t+B_{i} \cos \omega_{i} t\right)
$$

In the general integral there are $2 N$ unknown constants of integration, that must be determined in terms of the initial conditions.

Initial Conditions

Usually the initial conditions are expressed in terms of initial displacements and initial

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\sum_{i=1}^{N} \boldsymbol{\psi}_{i} \omega_{i}\left(A_{i} \cos \omega_{i} t-B_{i} \sin \omega_{i} t\right) \tag{The}
\end{equation*}
$$

and evaluating the displacement and velocity for $t=0$ it is

$$
\mathbf{x}(0)=\sum_{i=1}^{N} \boldsymbol{\psi}_{i} B_{i}=\mathbf{x}_{0}, \quad \dot{\mathbf{x}}(0)=\sum_{i=1}^{N} \boldsymbol{\psi}_{i} \omega_{i} A_{i}=\dot{\mathbf{x}}_{0}
$$

Homogeneous Problem

The Homogeneous Equation of Motion Eigenvalues and Eigenvectors

Eigenvectors are Orthogonal

Modal Analysis

Initial Conditions

Usually the initial conditions are expressed in terms of initial displacements and initial
velocities \mathbf{x}_{0} and $\dot{\mathbf{x}}_{0}$, so we start deriving the expression of displacement with respect to time to obtain

$$
\dot{\mathbf{x}}(t)=\sum_{i=1}^{N} \boldsymbol{\psi}_{i} \omega_{i}\left(A_{i} \cos \omega_{i} t-B_{i} \sin \omega_{i} t\right)
$$

and evaluating the displacement and velocity for $t=0$ it is

$$
\mathbf{x}(0)=\sum_{i=1}^{N} \boldsymbol{\psi}_{i} B_{i}=\mathbf{x}_{0}, \quad \dot{\mathbf{x}}(0)=\sum_{i=1}^{N} \boldsymbol{\psi}_{i} \omega_{i} A_{i}=\dot{\mathbf{x}}_{0}
$$

The above equations are vector equations, each one corresponding to a system of N equations, so we can compute the $2 N$ constants of integration solving the $2 N$ equations

$$
x_{0, j}=\sum_{i=1}^{N} \psi_{j i} B_{i}, \quad \dot{x}_{0, j}=\sum_{i=1}^{N} \psi_{j i} \omega_{i} A_{i}=, \quad j=1, \ldots, N
$$

Orthogonality - 1

Take into consideration two distinct eigenvalues, ω_{r}^{2} and ω_{s}^{2}, and write the characteristic equation for each eigenvalue:

$$
\begin{aligned}
& \mathbf{K} \boldsymbol{\psi}_{r}=\omega_{r}^{2} \mathbf{M} \boldsymbol{\psi}_{r} \\
& \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \mathbf{M} \boldsymbol{\psi}_{s}
\end{aligned}
$$

Orthogonality - 1

Take into consideration two distinct eigenvalues, ω_{r}^{2} and ω_{s}^{2}, and write the characteristic equation for each eigenvalue:

$$
\begin{aligned}
& \mathbf{K} \boldsymbol{\psi}_{r}=\omega_{r}^{2} \mathbf{M} \boldsymbol{\psi}_{r} \\
& \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \mathbf{M} \boldsymbol{\psi}_{s}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{\psi}_{s}^{T} \mathbf{K} \boldsymbol{\psi}_{r} & =\omega_{r}^{2} \boldsymbol{\psi}_{s}^{T} \mathbf{M} \boldsymbol{\psi}_{r} \\
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s} & =\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s}
\end{aligned}
$$

Orthogonality - 2

The term $\boldsymbol{\psi}_{s}^{T} \mathbf{K} \boldsymbol{\psi}_{r}$ is a scalar, hence

$$
\boldsymbol{\psi}_{s}^{T} \mathbf{K} \boldsymbol{\psi}_{r}=\left(\boldsymbol{\psi}_{s}^{T} \mathbf{K} \boldsymbol{\psi}_{r}\right)^{T}=\boldsymbol{\psi}_{r}^{T} \mathbf{K}^{T} \boldsymbol{\psi}_{s}
$$

but \mathbf{K} is symmetrical, $\mathbf{K}^{T}=\mathbf{K}$ and we have

$$
\boldsymbol{\psi}_{s}^{T} \mathbf{K} \boldsymbol{\psi}_{r}=\boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s} .
$$

By a similar derivation

$$
\boldsymbol{\psi}_{s}^{T} \mathbf{M} \boldsymbol{\psi}_{r}=\boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s} .
$$

Orthogonality - 3

Substituting our last identities in the previous equations, we have

$$
\begin{aligned}
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s} & =\omega_{r}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s} \\
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s} & =\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s}
\end{aligned}
$$

subtracting member by member we find that

$$
\left(\omega_{r}^{2}-\omega_{s}^{2}\right) \boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s}=0
$$

Orthogonality - 3

Substituting our last identities in the previous equations, we have

$$
\begin{aligned}
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s} & =\omega_{r}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s} \\
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s} & =\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s}
\end{aligned}
$$

subtracting member by member we find that

$$
\left(\omega_{r}^{2}-\omega_{s}^{2}\right) \boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s}=0
$$

We started with the hypothesis that $\omega_{r}^{2} \neq \omega_{s}^{2}$, so for every $r \neq s$ we have that the corresponding eigenvectors are orthogonal with respect to the mass matrix

$$
\boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s}=0, \quad \text { for } r \neq s
$$

Orthogonality - 4

The eigenvectors are orthogonal also with respect to the stiffness matrix:

$$
\boldsymbol{\psi}_{s}^{T} \mathbf{K} \boldsymbol{\psi}_{r}=\omega_{r}^{2} \boldsymbol{\psi}_{s}^{T} \mathbf{M} \boldsymbol{\psi}_{r}=0, \quad \text { for } r \neq s
$$

Orthogonality - 4

The eigenvectors are orthogonal also with respect to the stiffness matrix:

$$
\boldsymbol{\psi}_{s}^{T} \mathbf{K} \boldsymbol{\psi}_{r}=\omega_{r}^{2} \boldsymbol{\psi}_{s}^{T} \mathbf{M} \boldsymbol{\psi}_{r}=0, \quad \text { for } r \neq s
$$

By definition

$$
M_{i}=\boldsymbol{\psi}_{i}^{T} \mathbf{M} \boldsymbol{\psi}_{i}
$$

and consequently

$$
\boldsymbol{\psi}_{i}^{T} \mathbf{K} \boldsymbol{\psi}_{i}=\omega_{i}^{2} M_{i}
$$

Orthogonality - 4

The eigenvectors are orthogonal also with respect to the stiffness matrix:

$$
\boldsymbol{\psi}_{s}^{T} \mathbf{K} \boldsymbol{\psi}_{r}=\omega_{r}^{2} \boldsymbol{\psi}_{s}^{T} \mathbf{M} \boldsymbol{\psi}_{r}=0, \quad \text { for } r \neq s
$$

By definition

$$
M_{i}=\boldsymbol{\psi}_{i}^{T} \mathbf{M} \boldsymbol{\psi}_{i}
$$

and consequently

$$
\boldsymbol{\psi}_{i}^{T} \mathbf{K} \boldsymbol{\psi}_{i}=\omega_{i}^{2} M_{i} .
$$

M_{i} is the modal mass associated with mode no. i while $K_{i} \equiv \omega_{i}^{2} M_{i}$ is the respective modal stiffness.

Section 3

Modal Analysis

The
Homogeneous Problem

Modal Analysis

Eigenvectors are
base base
EoM in Modal
Coordinates
Initial Conditions

Modal Analysis
Eigenvectors are a base
EoM in Modal Coordinates
Initial Conditions

Eigenvectors are a base

The eigenvectors are reciprocally orthogonal, so they are linearly independent and for every vector \mathbf{x} we can write

$$
\mathbf{x}=\sum_{j=1}^{N} \boldsymbol{\psi}_{j} q_{j}
$$

The coefficients are readily given by premultiplication of \mathbf{x} by $\boldsymbol{\psi}_{k}^{T} \mathbf{M}$, because

$$
\boldsymbol{\psi}_{i}^{T} \mathbf{M} \mathbf{x}=\sum_{j=1}^{N} \boldsymbol{\psi}_{i}^{T} \mathbf{M} \boldsymbol{\psi}_{j} q_{j}=\boldsymbol{\psi}_{i}^{T} \mathbf{M} \boldsymbol{\psi}_{i} q_{i}=M_{i} q_{i}
$$

in virtue of the ortogonality of the eigenvectors with respect to the mass matrix, and the above relationship gives

$$
q_{i}=\frac{\boldsymbol{\psi}_{i}^{T} \mathbf{M} \mathbf{x}}{M_{i}} .
$$

Eigenvectors are a base

Generalising our results for the displacement vector to the acceleration vector and

$$
\mathbf{x}(t)=\sum_{j=1}^{N} \boldsymbol{\psi}_{j} q_{j}(t)
$$

$$
\ddot{\mathbf{x}}(t)=\sum_{j=1}^{N} \boldsymbol{\psi}_{j} \ddot{q}_{j}(t)
$$

Introducing $\mathbf{q}(t)$, the vector of modal coordinates and $\boldsymbol{\Psi}$, the eigenvector matrix, whose columns are the eigenvectors, we can write

$$
x_{i}(t)=\sum_{j=1}^{N} \Psi_{i j} q_{j}(t), \quad \quad \ddot{x}_{i}(t)=\sum_{j=1}^{N} \Psi_{i j} \ddot{q}_{j}(t)
$$

or, in matrix notation

$$
\mathbf{x}(t)=\Psi \mathbf{q}(t),
$$

$$
\ddot{\mathbf{x}}(t)=\Psi \ddot{\mathbf{q}}(t)
$$

The
Homogeneous Problem

EoM in Modal Coordinates...

Substituting the last two equations in the equation of motion,

$$
\mathbf{M} \Psi \ddot{\mathbf{q}}+\mathbf{K} \Psi \mathbf{q}=\mathbf{p}(t)
$$

premultiplying by $\boldsymbol{\Psi}^{T}$

$$
\boldsymbol{\Psi}^{T} \mathbf{M} \boldsymbol{\Psi} \ddot{\mathbf{q}}+\boldsymbol{\Psi}^{T} \mathbf{K} \boldsymbol{\Psi} \mathbf{q}=\boldsymbol{\Psi}^{T} \mathbf{p}(t)
$$

introducing the so called starred matrices, with $\mathbf{p}^{\star}(t)=\boldsymbol{\Psi}^{T} \mathbf{p}(t)$, we can finally write

$$
\mathbf{M}^{\star} \ddot{\mathbf{q}}+\mathbf{K}^{\star} \mathbf{q}=\mathbf{p}^{\star}(t)
$$

The vector equation above corresponds to the set of scalar equations

$$
p_{i}^{\star}=\sum m_{i j}^{\star} \ddot{q}_{j}+\sum k_{i j}^{\star} q_{j}, \quad i=1, \ldots, N .
$$

... are N independent equations!

We must examine the structure of the starred symbols.
The generic element, with indexes i and j, of the starred matrices can be expressed in terms of single eigenvectors,

$$
\begin{aligned}
m_{i j}^{\star} & =\boldsymbol{\psi}_{i}^{T} \mathbf{M} \boldsymbol{\psi}_{j} & = & \delta_{i j} M_{i}, \\
k_{i j}^{\star} & =\boldsymbol{\psi}_{i}^{T} \mathbf{K} \boldsymbol{\psi}_{j} & & =\omega_{i}^{2} \delta_{i j} M_{i} .
\end{aligned}
$$

where $\delta_{i j}$ is the Kroneker symbol,

$$
\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

... are N independent equations!

We must examine the structure of the starred symbols.
Giacomo Boffi
The generic element, with indexes i and j, of the starred matrices can be expressed in terms of single eigenvectors,

$$
\begin{array}{rlrl}
m_{i j}^{\star} & =\boldsymbol{\psi}_{i}^{T} \mathbf{M} \boldsymbol{\psi}_{j} & =\delta_{i j} M_{i} \\
k_{i j}^{\star} & =\boldsymbol{\psi}_{i}^{T} \mathbf{K} \boldsymbol{\psi}_{j} & & =\omega_{i}^{2} \delta_{i j} M_{i} .
\end{array}
$$

$$
\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Substituting in the equation of motion, with $p_{i}^{\star}=\boldsymbol{\psi}_{i}^{T} \mathbf{p}(t)$ we have a set of uncoupled equations

$$
M_{i} \ddot{q}_{i}+\omega_{i}^{2} M_{i} q_{i}=p_{i}^{\star}(t), \quad i=1, \ldots, N
$$

Initial Conditions Revisited

The initial displacements can be written in modal coordinates,
and premultiplying both members by $\boldsymbol{\Psi}^{T} \mathbf{M}$ we have the following relationship:

$$
\boldsymbol{\Psi}^{T} \mathbf{M} \mathbf{x}_{0}=\boldsymbol{\Psi}^{T} \mathbf{M} \boldsymbol{\Psi} \mathbf{q}_{0}=\mathbf{M}^{\star} \mathbf{q}_{0} .
$$

Premultiplying by the inverse of \mathbf{M}^{\star} and taking into account that \mathbf{M}^{\star} is diagonal,

$$
\mathbf{q}_{0}=\left(\mathbf{M}^{\star}\right)^{-1} \boldsymbol{\Psi}^{T} \mathbf{M} \mathbf{x}_{0} \quad \Rightarrow \quad q_{i 0}=\frac{\boldsymbol{\psi}_{i}^{T} \mathbf{M} \mathbf{x}_{0}}{M_{i}}
$$

and, analogously,

$$
\dot{q}_{i 0}=\frac{\boldsymbol{\psi}_{i}{ }^{T} \mathbf{M} \dot{\mathbf{x}}_{0}}{M_{i}}
$$

Note that $q_{i 0}$ and $\dot{q}_{i 0}$ depend only on the single eigenvector $\boldsymbol{\psi}_{i}$.
Section 4

Examples

The
Homogeneous Problem

Introductory Remarks

The Homogeneous Problem

Modal Analysis

Examples

2 DOF System

2 DOF System

$$
\begin{gathered}
x_{1}=2 k, \quad k_{2}=3 k ; \quad m_{1}=2 m, \quad m_{2}=4 m \\
k_{1} \\
x_{1}(t)=p_{0} \sin \omega t . \\
\mathbf{x}=\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}, \mathbf{p}(t)=\left\{\begin{array}{c}
0 \\
p_{0}
\end{array}\right\} \sin \omega t \\
\mathbf{M}=m\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right], \mathbf{K}=k\left[\begin{array}{cc}
5 & -3 \\
-3 & 3
\end{array}\right]
\end{gathered}
$$

Multi DoF
Systems
Giacomo Boffi

Introduction

The
Homogeneous Problem

Modal Analysis
Examples
2 DOF System

Equation of frequencies

The equation of frequencies is

$$
\left\|\mathbf{K}-\omega^{2} \mathbf{M}\right\|=\left\|\begin{array}{cc}
5 k-2 \omega^{2} m & -3 k \\
-3 k & 3 k-4 \omega^{2} m
\end{array}\right\|=0 .
$$

Equation of frequencies

The equation of frequencies is

$$
\left\|\mathbf{K}-\omega^{2} \mathbf{M}\right\|=\left\|\begin{array}{cc}
5 k-2 \omega^{2} m & -3 k \\
-3 k & 3 k-4 \omega^{2} m
\end{array}\right\|=0 .
$$

$$
\left(8 m^{2}\right) \omega^{4}-(26 m k) \omega^{2}+\left(6 k^{2}\right) \omega^{0}=0
$$

Equation of frequencies

The equation of frequencies is

$$
\left\|\mathbf{K}-\omega^{2} \mathbf{M}\right\|=\left\|\begin{array}{cc}
5 k-2 \omega^{2} m & -3 k \\
-3 k & 3 k-4 \omega^{2} m
\end{array}\right\|=0 .
$$

$$
\left(8 m^{2}\right) \omega^{4}-(26 m k) \omega^{2}+\left(6 k^{2}\right) \omega^{0}=0
$$

Solving the algebraic equation in ω^{2}

$$
\begin{aligned}
\omega_{1}^{2} & =\frac{k}{m} \frac{13-\sqrt{121}}{8}, & \omega_{2}^{2} & =\frac{k}{m} \frac{13+\sqrt{121}}{8} \\
\omega_{1}^{2} & =\frac{1}{4} \frac{k}{m}, & \omega_{2}^{2} & =3 \frac{k}{m}
\end{aligned}
$$

Eigenvectors

Substituting ω_{1}^{2} for ω^{2} in the first of the characteristic equations gives the ratio between the components of the first eigenvector,

$$
k\left(5-2 \cdot \frac{1}{4}\right) \psi_{11}=3 k \psi_{21}
$$

while substituting ω_{2}^{2} gives

Giacomo Boffi

$$
k(3-4 \cdot 3) \psi_{12}=3 k \psi_{22} .
$$

Eigenvectors

Substituting ω_{1}^{2} for ω^{2} in the first of the characteristic equations gives the ratio between the components of the first eigenvector,

Giacomo Boffi

$$
k\left(5-2 \cdot \frac{1}{4}\right) \psi_{11}=3 k \psi_{21}
$$

while substituting ω_{2}^{2} gives

$$
k(3-4 \cdot 3) \psi_{12}=3 k \psi_{22} .
$$

Solving with the arbitrary assignment $\psi_{11}=\psi_{22}=1$ gives the unnormalized eigenvectors,

$$
\boldsymbol{\psi}_{1}=\left\{\begin{array}{l}
+1 \\
+\frac{3}{2}
\end{array}\right\}, \quad \boldsymbol{\psi}_{2}=\left\{\begin{array}{l}
-3 \\
+1
\end{array}\right\} .
$$

Normalization

We compute first M_{1} and M_{2},

$$
\begin{aligned}
M_{1} & =\boldsymbol{\psi}_{1}^{T} \mathbf{M} \boldsymbol{\psi}_{1} \\
& =m\left\{1, \quad \frac{3}{2}\right\}\left[\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right]\left\{\begin{array}{l}
1 \\
\frac{3}{2}
\end{array}\right\} \\
& =m\{2, \quad 6\}\left\{\begin{array}{l}
1 \\
\frac{3}{2}
\end{array}\right\}=11 m
\end{aligned}
$$

and, in a similar way, we have $M_{2}=22 \mathrm{~m}$; the adimensional normalisation factors are

$$
\alpha_{1}=\sqrt{11}=3.317, \quad \alpha_{2}=\sqrt{22}=4.690
$$

Applying the normalisation factors to the respective unnormalised eigenvectors and collecting them in a matrix, we have the matrix of normalized eigenvectors

$$
\boldsymbol{\Psi}=\left[\begin{array}{ll}
+0.30151 & -0.63960 \\
+0.45227 & +0.21320
\end{array}\right]
$$

Modal Loadings

The modal loading is

$$
\begin{aligned}
\mathbf{p}^{\star}(t) & =\boldsymbol{\Psi}^{T} \mathbf{p}(t) \\
& =p_{0}\left[\begin{array}{cc}
1 & 3 / 2 \\
-3 & 1
\end{array}\right]\left\{\begin{array}{l}
0 \\
1
\end{array}\right\} \sin \omega t \\
& =p_{0}\left\{\begin{array}{c}
3 / 2 \\
1
\end{array}\right\} \sin \omega t
\end{aligned}
$$

Introduction
The
Homogeneous Problem

Modal Analysis
Examples
2 DOF System

Modal EoM

Substituting its modal expansion for \mathbf{x} into the equation of motion and premultiplying by $\boldsymbol{\Psi}^{T}$ we have the uncoupled modal equation of motion

$$
\left\{\begin{array}{l}
11 m \ddot{q}_{1}+\frac{1}{4} 11 m \frac{k}{m} q_{1}=\frac{3}{2} p_{0} \sin \omega t \\
22 m \ddot{q}_{2}+322 m \frac{k}{m} q_{2}=p_{0} \sin \omega t
\end{array}\right.
$$

Note that all the terms are dimensionally correct. Dividing by M_{i} both equations, we have

$$
\left\{\begin{array}{l}
\ddot{q}_{1}+\frac{1}{4} \omega_{0}^{2} q_{1}=3 / 2 \frac{p_{0}}{11 m} \sin \omega t \\
\ddot{q}_{2}+3 \omega_{0}^{2} q_{2}=\frac{p_{0}}{22 m} \sin \omega t
\end{array}\right.
$$

Particular Integral

We set

$$
\xi_{1}=C_{1} \sin \omega t, \quad \ddot{\xi}=-\omega^{2} C_{1} \sin \omega t
$$

and substitute in the first modal EoM:

$$
C_{1}\left(\omega_{1}^{2}-\omega^{2}\right) \sin \omega t=\frac{3}{22} \frac{p_{0}}{k} \frac{k}{m} \sin \omega t
$$

Homogeneous Problem
solving for C_{1}

$$
C_{1}=\frac{3}{22} \Delta \frac{\omega_{0}^{2}}{\omega_{1}^{2}-\omega^{2}}
$$

and, analogously,

$$
C_{2}=\frac{1}{22} \Delta \frac{\omega_{0}^{2}}{\omega_{2}^{2}-\omega^{2}}
$$

with $\Delta=p_{0} / k$.

Integrals

The integrals, for our loading, are thus

$$
\left\{\begin{array}{l}
q_{1}(t)=A_{1} \sin \omega_{1} t+B_{1} \cos \omega_{1} t+C_{1} \sin \omega t \\
q_{2}(t)=A_{2} \sin \omega_{2} t+B_{2} \cos \omega_{2} t+C_{2} \sin \omega t
\end{array}\right.
$$

The
Homogeneous Problem

Modal Analysis
where $\beta_{i}=\omega / \omega_{i}$
We are interested in structural degrees of freedom, too...

$$
\left\{\begin{array}{l}
x_{1}(t)=\left(\psi_{11} q_{1}(t)+\psi_{12} q_{2}(t)\right) \\
x_{2}(t)=\left(\psi_{21} q_{1}(t)+\psi_{22} q_{2}(t)\right)
\end{array}\right.
$$

The response in modal coordinates

To have a feeling of the response in modal coordinates, let's say that the frequency of the load
Giacomo Boffi is $\omega=2 \omega_{0}$, hence $\beta_{1}=\frac{2.0}{\sqrt{1 / 4}}=4$ and $\beta_{2}=\frac{2.0}{\sqrt{3}}=1.15470$.

The
Homogeneous Problem

Modal Analysis

In the graph above, the responses are plotted against an adimensional time coordinate α with $\alpha=\omega_{0} t$, while the ordinates are adimensionalised with respect to $\Delta_{\mathrm{st}}=\frac{p_{0}}{k}$

The response in structural coordinates

Using the same normalisation factors, here are the response functions in terms of $x_{1}=\psi_{11} q_{1}+\psi_{12} q_{2}$ and $x_{2}=\psi_{21} q_{1}+\psi_{22} q_{2}$:

Structural Response

The response in structural coordinates

And the displacement of the centre of mass plotted along with the difference in displacements.

