Structural Matrices in MDOF Systems

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Choice of
Property
Formulation

Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano

March 31, 2020

Outline

	Structural Matrices Giacomo Boffi
Introductory Remarks	Introductory Remarks
Structural Matrices	Structural Matrices
Evaluation of Structural Matrices	Evaluation of Structural Matrices
Choice of Property Formulation	Choice of Property Formulation

Introductory Remarks

Today we will study the properties of structural matrices, that is the operators that relate the vector of system coordinates \mathbf{x} and its time derivatives $\dot{\mathbf{x}}$ and $\ddot{\mathbf{x}}$ to the forces acting on the system nodes, $\mathbf{f}_{S}, \mathbf{f}_{\mathrm{D}}$ and \mathbf{f}_{l}, respectively.

Introductory Remarks

	Structural Matrices
	Giacomo Boffi
	Introductory Remarks
Today we will study the properties of structural matrices, that is the operators that	Structural Matrices
relate the vector of system coordinates \mathbf{x} and its time derivatives $\dot{\mathbf{x}}$ and $\ddot{\mathbf{x}}$ to the forces acting on the system nodes, $\mathbf{f}_{\mathrm{S}}, \mathbf{f}_{\mathrm{D}}$ and \mathbf{f}_{l}, respectively.	Evaluation of Structural Matrice
In the end, we will see again the solution of a MDOF problem by superposition, and in general today we will revisit many of the subjects of our previous class.	Choice of Property Formulatio

Section 2

Structural Matrices

Introductory Remarks

Structural Matrices
Orthogonality Relationships
Additional Orthogonality Relationships

Evaluation of Structural Matrices

Structural Matrices

We already met the mass and the stiffness matrix, \mathbf{M} and \mathbf{K}, and tangentially we introduced also the dampig matrix \mathbf{C}.

Giacomo Boffi
We have seen that these matrices express the linear relation that holds between the vector of system coordinates \mathbf{x} and its time derivatives $\dot{\mathbf{x}}$ and $\ddot{\mathbf{x}}$ to the forces acting on the system nodes, $\mathbf{f}_{\mathrm{S}}, \mathbf{f}_{\mathrm{D}}$ and \mathbf{f}_{1}, elastic, damping and inertial force vectors.

$$
\begin{aligned}
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{C} \dot{\mathbf{x}}+\mathbf{K} \mathbf{x} & =\mathbf{p}(t) \\
\mathbf{f}_{\mathrm{l}}+\mathbf{f}_{\mathrm{D}}+\mathbf{f}_{\mathrm{S}} & =\mathbf{p}(t)
\end{aligned}
$$

Also, we know that \mathbf{M} and \mathbf{K} are symmetric and definite positive, and that it is possible to uncouple the equation of motion expressing the system coordinates in terms of the eigenvectors, $\mathbf{x}(t)=\sum q_{i} \boldsymbol{\psi}_{i}$, where the q_{i} are the modal coordinates and the eigenvectors ψ_{i} are the non-trivial solutions to the equation of free vibrations,

$$
\left(\mathbf{K}-\omega^{2} \mathbf{M}\right) \boldsymbol{\psi}=\mathbf{0}
$$

Free Vibrations

From the homogeneous, undamped problem
we wrote the homogeneous linear system

$$
\left(\mathbf{K}-\omega^{2} \mathbf{M}\right) \boldsymbol{\psi}=\mathbf{0}
$$

whose non-trivial solutions ψ_{i} for ω_{i}^{2} such that $\left\|\mathbf{K}-\omega_{i}^{2} \mathbf{M}\right\|=0$ are the eigenvectors. It was demonstrated that, for each pair of distint eigenvalues ω_{r}^{2} and ω_{s}^{2}, the corresponding eigenvectors obey the ortogonality condition,

$$
\boldsymbol{\psi}_{s}^{T} \mathbf{M} \boldsymbol{\psi}_{r}=\delta_{r s} M_{r}, \quad \boldsymbol{\psi}_{s}^{T} \mathbf{K} \boldsymbol{\psi}_{r}=\delta_{r s} \omega_{r}^{2} M_{r} .
$$

Additional Orthogonality Relationships

Starting from the equation of free vibrations (EOFV)

$$
\mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \mathbf{M} \boldsymbol{\psi}_{s}
$$

pre-multiplying both members by $\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1}$ we have

$$
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s}
$$

Matrices
Orthogonality
Relationships
Additional Orthogonality Relationships

Additional Orthogonality Relationships

Starting from the equation of free vibrations (EOFV)

$$
\mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \mathbf{M} \boldsymbol{\psi}_{s}
$$

pre-multiplying both members by $\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1}$ we have

$$
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{4} \boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s}
$$

Orthogonality
Relationships
Additional Orthogonality Relationships

Additional Orthogonality Relationships

Starting from the equation of free vibrations (EOFV)

$$
\mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \mathbf{M} \boldsymbol{\psi}_{s}
$$

pre-multiplying both members by $\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1}$ we have

$$
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{4} \boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s}=\delta_{r s} \omega_{r}^{4} M_{r} .
$$

Orthogonality
Relationships
Additional Orthogonality Relationships

Additional Orthogonality Relationships

Starting from the equation of free vibrations (EOFV)

$$
\mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \mathbf{M} \boldsymbol{\psi}_{s}
$$

pre-multiplying both members by $\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1}$ we have

$$
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{4} \boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s}=\delta_{r s} \omega_{r}^{4} M_{r} .
$$

Pre-multiplying both members of the EOFV by $\boldsymbol{\psi}_{r}^{T} \mathbf{K M}^{-1} \mathbf{K M}^{-1}$ we have (compare with our previous result)

$$
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \boldsymbol{\psi}_{s}=
$$

Additional Orthogonality Relationships

Starting from the equation of free vibrations (EOFV)

$$
\mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \mathbf{M} \boldsymbol{\psi}_{s}
$$

pre-multiplying both members by $\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1}$ we have

$$
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{4} \boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s}=\delta_{r s} \omega_{r}^{4} M_{r} .
$$

Pre-multiplying both members of the EOFV by $\boldsymbol{\psi}_{r}^{T} \mathbf{K M}^{-1} \mathbf{K M}^{-1}$ we have (compare with our previous result)

$$
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \boldsymbol{\psi}_{s}=\delta_{r s} \omega_{r}^{6} M_{r}
$$

Additional Orthogonality Relationships

Starting from the equation of free vibrations (EOFV)

$$
\mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \mathbf{M} \boldsymbol{\psi}_{s}
$$

pre-multiplying both members by $\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1}$ we have

$$
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{4} \boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s}=\delta_{r s} \omega_{r}^{4} M_{r} .
$$

Pre-multiplying both members of the EOFV by $\boldsymbol{\psi}_{r}^{T} \mathbf{K M}^{-1} \mathbf{K M}^{-1}$ we have (compare with our previous result)

$$
\boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \boldsymbol{\psi}_{s}=\omega_{s}^{2} \boldsymbol{\psi}_{r}^{T} \mathbf{K} \mathbf{M}^{-1} \mathbf{K} \boldsymbol{\psi}_{s}=\delta_{r s} \omega_{r}^{6} M_{r}
$$

and, generalizing,

$$
\boldsymbol{\psi}_{r}^{T}\left(\mathbf{K M}^{-1}\right)^{b} \mathbf{K} \boldsymbol{\psi}_{s}=\delta_{r s}\left(\omega_{r}^{2}\right)^{b+1} M_{r}
$$

Additional Relationships, 2

Let's rearrange the equation of free vibrations

$$
\mathbf{M} \boldsymbol{\psi}_{s}=\omega_{s}^{-2} \mathbf{K} \boldsymbol{\psi}_{s} .
$$

Pre-multiplying both members by $\boldsymbol{\psi}_{r}^{T} \mathbf{M K}{ }^{-1}$ we have

Introductory
Remarks
Structural Matrices

Orthogonality Relationships
Additional Orthogonality Relationships

Evaluation of
Structural
Matrices
Choice of
Property
Formulation

Additional Relationships, 2

Let's rearrange the equation of free vibrations

$$
\mathbf{M} \boldsymbol{\psi}_{s}=\omega_{s}^{-2} \mathbf{K} \boldsymbol{\psi}_{s} .
$$

Giacomo Boffi

Introductory
Remarks
Structural Matrices

Orthogonality
Relationships
Additional Orthogonality Relationships

Additional Relationships, 2

Let's rearrange the equation of free vibrations

Pre-multiplying both members of the EOFV by $\boldsymbol{\psi}_{r}^{T}\left(\mathbf{M K}^{-1}\right)^{2}$ we have

$$
\boldsymbol{\psi}_{r}^{T}\left(\mathbf{M K}^{-1}\right)^{2} \mathbf{M} \boldsymbol{\psi}_{s}=\omega_{s}^{-2} \boldsymbol{\psi}_{r}^{T} \mathbf{M} K^{-1} \mathbf{M} \boldsymbol{\psi}_{s}
$$

Additional Relationships, 2

Let's rearrange the equation of free vibrations

Pre-multiplying both members of the EOFV by $\boldsymbol{\psi}_{r}^{T}\left(\mathbf{M K}^{-1}\right)^{2}$ we have

$$
\left.\boldsymbol{\psi}_{r}^{T}(\mathbf{M K})^{-1}\right)^{2} \mathbf{M} \boldsymbol{\psi}_{s}=\omega_{s}^{-2} \boldsymbol{\psi}_{r}^{T} \mathbf{M} \mathbf{K}^{-1} \mathbf{M} \boldsymbol{\psi}_{s}=\delta_{r s} \frac{M_{s}}{\omega_{s}^{4}}
$$

Additional Relationships, 2

Let's rearrange the equation of free vibrations

Pre-multiplying both members of the EOFV by $\boldsymbol{\psi}_{r}^{T}\left(\mathbf{M K}^{-1}\right)^{2}$ we have

$$
\left.\boldsymbol{\psi}_{r}^{T}(\mathbf{M K})^{-1}\right)^{2} \mathbf{M} \boldsymbol{\psi}_{s}=\omega_{s}^{-2} \boldsymbol{\psi}_{r}^{T} \mathbf{M} \mathbf{K}^{-1} \mathbf{M} \boldsymbol{\psi}_{s}=\delta_{r s} \frac{M_{s}}{\omega_{s}^{4}}
$$

and, generalizing,

$$
\boldsymbol{\psi}_{r}^{T}\left(\mathbf{M} \mathbf{K}^{-1}\right)^{b} \mathbf{M} \boldsymbol{\psi}_{s}=\delta_{r s} \frac{M_{s}}{\omega_{s}^{2 b}}
$$

Additional Relationships, 3

Defining $X^{(k)}=\mathbf{M}\left(\mathbf{M}^{-1} \mathbf{K}\right)^{k}$ we have

Structural

$$
\begin{cases}\boldsymbol{\psi}_{r}^{T} X^{(0)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{0} M_{s} \\ \boldsymbol{\psi}_{r}^{T} X^{(1)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{1} M_{s} \\ \boldsymbol{\psi}_{r}^{T} X^{(2)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T}\left(\mathbf{K} \mathbf{M}^{-1}\right)^{1} \mathbf{K} \boldsymbol{\psi}_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{2} M_{s} \\ \cdots & \\ \boldsymbol{\psi}_{r}^{T} X^{(n)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T}\left(\mathbf{K M}^{-1}\right)^{n-1} \mathbf{K} \boldsymbol{\psi}_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{n} M_{s}\end{cases}
$$

Introductory
Remarks
Structural
Matrices
Orthogonality
Relationships
Additional Orthogonality Relationships

Evaluation of
Structural
Matrices

Choice of
Property
Formulation

Additional Relationships, 3

Defining $X^{(k)}=\mathbf{M}\left(\mathbf{M}^{-1} \mathbf{K}\right)^{k}$ we have

$$
\begin{cases}\boldsymbol{\psi}_{r}^{T} X^{(0)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{0} M_{s} \\ \boldsymbol{\psi}_{r}^{T} X^{(1)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{1} M_{s} \\ \boldsymbol{\psi}_{r}^{T} X^{(2)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T}\left(\mathbf{K} \mathbf{M}^{-1}\right)^{1} \mathbf{K} \boldsymbol{\psi}_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{2} M_{s} \\ \cdots & \\ \boldsymbol{\psi}_{r}^{T} X^{(n)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T}\left(\mathbf{K} \mathbf{M}^{-1}\right)^{n-1} \mathbf{K} \boldsymbol{\psi}_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{n} M_{s}\end{cases}
$$

Giacomo Boffi

Introductory
Remarks
Structural
Matrices
Orthogonality
Relationships
Additional Orthogonality Orthogonality
Relationships
Observing that $\left(\mathbf{M}^{-1} \mathbf{K}\right)^{-1}=\left(\mathbf{K}^{-1} \mathbf{M}\right)^{1}$
Evaluation of Structural Matrices

Choice of Property Formulation

Additional Relationships, 3

Defining $X^{(k)}=\mathbf{M}\left(\mathbf{M}^{-1} \mathbf{K}\right)^{k}$ we have

$$
\begin{cases}\boldsymbol{\psi}_{r}^{T} X^{(0)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T} \mathbf{M} \boldsymbol{\psi}_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{0} M_{s} \\ \boldsymbol{\psi}_{r}^{T} X^{(1)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T} \mathbf{K} \boldsymbol{\psi}_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{1} M_{s} \\ \boldsymbol{\psi}_{r}^{T} X^{(2)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T}\left(\mathbf{K} \mathbf{M}^{-1}\right)^{1} \mathbf{K} \boldsymbol{\psi}_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{2} M_{s} \\ \cdots & \\ \boldsymbol{\psi}_{r}^{T} X^{(n)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T}\left(\mathbf{K M}^{-1}\right)^{n-1} \mathbf{K} \boldsymbol{\psi}_{s} & =\delta_{r s}\left(\omega_{s}^{2}\right)^{n} M_{s}\end{cases}
$$

Giacomo Boffi

Observing that $\left(\mathbf{M}^{-1} \mathbf{K}\right)^{-1}=\left(\mathbf{K}^{-1} \mathbf{M}\right)^{1}$

$$
\left\{\begin{array}{l}
\boldsymbol{\psi}_{r}^{T} X^{(-1)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T}\left(\mathbf{M K}^{-1}\right)^{1} \mathbf{M} \boldsymbol{\psi}_{s}=\delta_{r s}\left(\omega_{s}^{2}\right)^{-1} M_{s} \\
\ldots \\
\boldsymbol{\psi}_{r}^{T} X^{(-n)} \boldsymbol{\psi}_{s}=\boldsymbol{\psi}_{r}^{T}\left(\mathbf{M K}^{-1}\right)^{n} \mathbf{M} \boldsymbol{\psi}_{s}=\delta_{r s}\left(\omega_{s}^{2}\right)^{-n} M_{s}
\end{array}\right.
$$

We can conclude that we the eigenvectors are orthogonal with respect to an infinite number of matrices $\mathbf{X}^{(k)}$ (\mathbf{M} and \mathbf{K} being two particular cases):

$$
\boldsymbol{\psi}_{r}^{T} X^{(k)} \boldsymbol{\psi}_{s}=\delta_{r s} \omega_{s}^{2 k} M_{s} \quad \text { for } k=-\infty, \ldots, \infty
$$

Evaluation of Structural Matrices

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices
Flexibility Matrix
Example
Stiffness Matrix
Mass Matrix
Damping Matrix
Geometric Stiffness
External Loading

Flexibility

Given a system whose state is determined by the generalized displacements x_{j} of a set of nodes, we define the flexibility coefficient $f_{j k}$ as the deflection, in direction of x_{j}, due to the application of a unit force in correspondance of the displacement x_{k}.

Giacomo Boffi

Flexibility

Given a system whose state is determined by the generalized displacements x_{j} of a set of nodes, we define the flexibility coefficient $f_{j k}$ as the deflection, in direction of x_{j}, due to the application of a unit force in correspondance of the displacement x_{k}. Given a load vector $\mathbf{p}=\left\{p_{k}\right\}$, the displacementent x_{j} is

Giacomo Boffi

Flexibility

Given a system whose state is determined by the generalized displacements x_{j} of a
Giacomo Boffi set of nodes, we define the flexibility coefficient $f_{j k}$ as the deflection, in direction of x_{j}, due to the application of a unit force in correspondance of the displacement x_{k}. Given a load vector $\mathbf{p}=\left\{p_{k}\right\}$, the displacementent x_{j} is

$$
x_{j}=\sum f_{j k} p_{k}
$$

or, in vector notation,

$$
\mathbf{x}=\mathbf{F} \mathbf{p}
$$

Evaluation of

- application of external forces and/or

■ presence of inertial forces.

Example

The dynamical system

Displacements due to $p_{1} \stackrel{f_{21}}{=} 1$

The degrees of freedom

and due to $p_{2}=1$.

Structural
Matrices
Giacomo Boffi

Introductory
Remarks
Structural
Matrices
Evaluation of Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Mass Matrix
Damping Matrix
Geometric Stiffness
External Loading
Choice of
Property
Formulation

Elastic Forces

Momentarily disregarding inertial effects, each node shall be in equilibrium under the action of the external forces and the elastic forces, hence taking into accounts all the nodes, all the external forces and all the elastic forces it is possible to write the vector equation of equilibrium

$$
\mathbf{p}=\mathbf{f}_{S}
$$

and, substituting in the previos vector expression of the displacements

$$
\mathbf{x}=\mathbf{F} \mathbf{f}_{S}
$$

Introductory
Remarks
Structural Matrices

Evaluation of Structural Matrices

Stiffness Matrix

The stiffness matrix \mathbf{K} can be simply defined as the inverse of the flexibility matrix \mathbf{F},

$$
\mathbf{K}=\mathbf{F}^{-1} .
$$

Introductory
Remarks
Structural
Matrices
Evaluation of Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Strain Energy
Symmetry
Direct Assemblage
Example
Mass Matrix
Damping Matrix
Geometric Stiffness
External Loading
Choice of
Property
Formulation

Stiffness Matrix

The stiffness matrix \mathbf{K} can be simply defined as the inverse of the flexibility matrix \mathbf{F},

$$
\mathbf{K}=\mathbf{F}^{-1} .
$$

Introductory
Remarks

To understand our formal definition, we must consider an unary vector of displacements,

$$
\mathbf{e}^{(i)}=\left\{\delta_{i j}\right\}, \quad j=1, \ldots, N,
$$

and the vector of nodal forces \mathbf{k}_{i} that, applied to the structure, produces the displacements $\mathbf{e}^{(i)}$

$$
\mathbf{F} \mathbf{k}_{i}=\mathbf{e}^{(i)}, \quad i=1, \ldots, N
$$

Stiffness Matrix

Collecting all the ordered $\mathbf{e}^{(i)}$ in a matrix \mathbf{E}, it is clear that $\mathbf{E} \equiv \mathbf{I}$ and we have, writing all the equations at once,

$$
\mathbf{F}\left[\mathbf{k}_{i}\right]=\left[\mathbf{e}^{(i)}\right]=\mathbf{E}=\mathbf{I} .
$$

Introductory
Remarks
Structural
Matrices
Evaluation of Structural Matrices
Flexibility Matrix Example
Stiffness Matrix
Strain Energy
Symmetry
Direct Assemblage

Stiffness Matrix

Collecting all the ordered $\mathbf{e}^{(i)}$ in a matrix \mathbf{E}, it is clear that $\mathbf{E} \equiv \mathbf{I}$ and we have, writing all the equations at once,

$$
\mathbf{F}\left[\mathbf{k}_{i}\right]=\left[\mathbf{e}^{(i)}\right]=\mathbf{E}=\mathbf{I} .
$$

Giacomo Boffi

$$
\mathbf{F K}=\mathbf{I}, \quad \Rightarrow \quad \mathbf{K}=\mathbf{F}^{-1}
$$

giving a physical interpretation to the columns of the stiffness matrix.
Finally, writing the nodal equilibrium, we have

$$
\mathbf{p}=\mathbf{f}_{\mathrm{S}}=\mathbf{K} \mathbf{x}
$$

Strain Energy

The elastic strain energy V can be written in terms of displacements and external forces,

$$
V=\frac{1}{2} \mathbf{p}^{T} \mathbf{x}=\frac{1}{2}\left\{\begin{array}{l}
\mathbf{p}^{T} \underbrace{\mathbf{F} \mathbf{p}}_{\mathbf{x}}, \\
\underbrace{\mathbf{x}^{T} \mathbf{K}}_{\mathbf{p}^{T}} \mathbf{x} .
\end{array}\right.
$$

Because the elastic strain energy of a stable system is always greater than zero, \mathbf{K} is a positive definite matrix.

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Flexibility Matrix Example
Stiffness Matrix
Strain Energy
Symmetry
Direct Assemblage

Strain Energy

The elastic strain energy V can be written in terms of displacements and external forces,

$$
V=\frac{1}{2} \mathbf{p}^{T} \mathbf{x}=\frac{1}{2}\left\{\begin{array}{l}
\mathbf{p}^{T} \underbrace{\mathbf{F} \mathbf{p}}_{\mathbf{x}}, \\
\underbrace{\mathbf{x}^{T} \mathbf{K}}_{\mathbf{p}^{T}} \mathbf{x} .
\end{array}\right.
$$

Because the elastic strain energy of a stable system is always greater than zero, \mathbf{K} is a positive definite matrix.

On the other hand, for an unstable system, think of a compressed beam, there are displacement patterns that are associated to zero strain energy.

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Flexibility Matrix Example
Stiffness Matrix
Strain Energy
Symmetry
Direct Assemblage

Symmetry

Two sets of loads \mathbf{p}^{A} and \mathbf{p}^{B} are applied, one after the other, to an elastic system; the work done is

$$
V_{A B}=\frac{1}{2} \mathbf{p}^{A^{T}} \mathbf{x}^{A}+\mathbf{p}^{A^{T}} \mathbf{x}^{B}+\frac{1}{2} \mathbf{p}^{B^{T}} \mathbf{x}^{B}
$$

$$
V_{B A}=\frac{1}{2} \mathbf{p}^{B^{T}} \mathbf{x}^{B}+\mathbf{p}^{B^{T}} \mathbf{x}^{A}+\frac{1}{2} \mathbf{p}^{A^{T}} \mathbf{x}^{A}
$$

The total work being independent of the order of loading,

$$
\mathbf{p}^{A^{T}} \mathbf{x}^{B}=\mathbf{p}^{B^{T}} \mathbf{x}^{A}
$$

Symmetry, 2

Expressing the displacements in terms of \mathbf{F},

$$
\mathbf{p}^{A^{T}} \mathbf{F} \mathbf{p}^{B}=\mathbf{p}^{B^{T}} \mathbf{F} \mathbf{p}^{A}
$$

both terms are scalars so we can write

$$
\mathbf{p}^{A^{T}} \mathbf{F} \mathbf{p}^{B}=\left(\mathbf{p}^{B^{T}} \mathbf{F} \mathbf{p}^{A}\right)^{T}=\mathbf{p}^{A^{T}} \mathbf{F}^{T} \mathbf{p}^{B}
$$

Because this equation holds for every \mathbf{p}, we conclude that

$$
\mathbf{F}=\mathbf{F}^{T} .
$$

The inverse of a symmetric matrix is symmetric, hence

$$
\mathbf{K}=\mathbf{K}^{T}
$$

Giacomo Boffi

A practical consideration

For the kind of structures we mostly deal with in our examples, problems, exercises and assignments, that is simple structures, it is usually convenient to compute first the flexibility matrix applying the Principle of Virtual Displacements and later the stiffness matrix, using inversion,

$$
\mathbf{K}=\mathbf{F}^{-1} .
$$

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Strain Energy
Symmetry
Direct Assemblage

A practical consideration

For the kind of structures we mostly deal with in our examples, problems, exercises and assignments, that is simple structures, it is usually convenient to compute first the

Introductory
Remarks
Structural

A practical consideration

For the kind of structures we mostly deal with in our examples, problems, exercises and assignments, that is simple structures, it is usually convenient to compute first the flexibility matrix applying the Principle of Virtual Displacements and later the stiffness matrix, using inversion,

$$
\mathbf{K}=\mathbf{F}^{-1} .
$$

On the other hand, the PVD approach cannot work in practice for real structures, behaviour exceeds our ability to apply the PVD...

The procedure to compute the stiffness matrix can be sketched in the following terms:

The procedure to compute the stiffness matrix can be sketched in the following terms:
■ the structure is subdivided in non-overlapping portions, the finite elements, bounded by Giacomo Boffi nodes, connected by the same nodes,

Introductory
Remarks
Structural
Matrices
Evaluation of Structural
Matrices
Flexibility Matrix Example
Stiffness Matrix
Strain Energy
Symmetry
Direct Assemblage
Example
Mass Matrix
Damping Matrix
Geometric Stiffness
External Loading

The procedure to compute the stiffness matrix can be sketched in the following terms:
Giacomo Boffi
■ the structure is subdivided in non-overlapping portions, the finite elements, bounded by nodes, connected by the same nodes,

■ the state of the structure can be described in terms of a vector \mathbf{x} of nodal displacements,

The procedure to compute the stiffness matrix can be sketched in the following terms:
Giacomo Boffi
■ the structure is subdivided in non-overlapping portions, the finite elements, bounded by nodes, connected by the same nodes,

- the state of the structure can be described in terms of a vector \mathbf{x} of nodal displacements,

■ there is a mapping between element and structure DOF's, $i_{\mathrm{el}} \mapsto r$,

The procedure to compute the stiffness matrix can be sketched in the following terms:
Giacomo Boffi

- the structure is subdivided in non-overlapping portions, the finite elements, bounded by

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Flexibility Matrix Example

The procedure to compute the stiffness matrix can be sketched in the following terms:
Giacomo Boffi
■ the structure is subdivided in non-overlapping portions, the finite elements, bounded by

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Strain Energy
Symmetry
Direct Assemblage
Example
Mass Matrix
Damping Matrix
Geometric Stiffness

The procedure to compute the stiffness matrix can be sketched in the following terms:
Giacomo Boffi
■ the structure is subdivided in non-overlapping portions, the finite elements, bounded by

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Strain Energy
Symmetry
Direct Assemblage
Example
Mass Matrix
Damping Matrix Geometric Stiffness External Loading

Example

Consider a 2-D inextensible beam element, that has 4 DOF, namely two transverse end displacements x_{1}, x_{2} and two end rotations, x_{3}, x_{4}.

Giacomo Boffi

The element stiffness is computed using 4 shape functions ϕ_{i}, the transverse displacement being $v(s)=\sum_{i} \phi_{i}(s) x_{i}, 0 \leq s \leq L$, the different ϕ_{i} are such all end displacements or rotation are zero, except the one corresponding to index i.
The shape functions for a beam are

$$
\begin{array}{ll}
\phi_{1}(s)=1-3\left(\frac{s}{L}\right)^{2}+2\left(\frac{s}{L}\right)^{3}, & \phi_{2}(s)=3\left(\frac{s}{L}\right)^{2}-2\left(\frac{s}{L}\right)^{3} \\
\phi_{3}(s)=\left(\frac{s}{L}\right)-2\left(\frac{s}{L}\right)^{2}+\left(\frac{s}{L}\right)^{3}, & \phi_{4}(s)=-\left(\frac{s}{L}\right)^{2}+\left(\frac{s}{L}\right)^{3}
\end{array}
$$

Example, 2

The element stiffness coefficients can be computed using, what else, the PVD: we compute the external virtual work done by a virtual displacement δx_{i} and the force due to a unit displacement x_{j}, that is $k_{i j}$,

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Flexibility Matrix Example
Stiffness Matrix
Strain Energy
Symmetry
Direct Assemblage

Example

Mass Matrix
Damping Matrix
Geometric Stiffness

Example, 3

The equilibrium condition is the equivalence of the internal and external virtual works, so that simplifying δx_{i} we have

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Strain Energy
Symmetry
Direct Assemblage
Example
Mass Matrix
Damping Matrix
Geometric Stiffness

Blackboard Time!

Structural

Matrices

Giacomo Boffi

Introductory
Remarks
Structural
Matrices
Evaluation of Structural
Matrices
Flexibility Matrix Example
Stiffness Matrix
Strain Energy
Symmetry
Direct Assemblage

Example

Mass Matrix
Damping Matrix
Geometric Stiffness
External Loading
Choice of
Property
Formulation

Mass Matrix

The mass matrix maps the nodal accelerations to nodal inertial forces, and the most common assumption is to concentrate all the masses in nodal point masses, without rotational inertia, computed lumping a fraction of each element mass (or a fraction of the supported mass) on all its bounding nodes.
This procedure leads to a so called lumped mass matrix, a diagonal matrix with diagonal elements greater than zero for all the translational degrees of freedom and diagonal elements equal to zero for angular degrees of freedom.

Mass Matrix

The mass matrix is definite positive only if all the structure DOF's are translational degrees of freedom, otherwise \mathbf{M} is semi-definite positive and the eigenvalue procedure is not directly applicable. This problem can be overcome either by using a consistent mass matrix or using the static condensation procedure.

Consistent Mass Matrix

A consistent mass matrix is built using the rigorous FEM procedure, computing the nodal reactions that equilibrate the distributed inertial forces that develop in the element due to a linear combination of inertial forces.
Using our beam example as a reference, consider the inertial forces associated with a single nodal acceleration $\ddot{x}_{j}, f_{1, j}(s)=m(s) \phi_{j}(s) \ddot{x}_{j}$ and denote with $m_{i j} \ddot{x}_{j}$ the reaction associated with the i-nth degree of freedom of the element, by the PVD

$$
\delta x_{i} m_{i j} \ddot{x}_{j}=\int \delta x_{i} \phi_{i}(s) m(s) \phi_{j}(s) \mathrm{d} s \ddot{x}_{j}
$$

simplifying

$$
m_{i j}=\int m(s) \phi_{i}(s) \phi_{j}(s) \mathrm{d} s
$$

For $m(s)=\bar{m}=$ const.

$$
\mathbf{f}_{1}=\frac{\bar{m} L}{420}\left[\begin{array}{cccc}
156 & 54 & 22 L & -13 L \\
54 & 156 & 13 L & -22 L \\
22 L & 13 L & 4 L^{2} & -3 L^{2} \\
-13 L & -22 L & -3 L^{2} & 4 L^{2}
\end{array}\right] \ddot{\mathbf{x}}
$$

Introductory
Remarks
Structural
Matrices
Evaluation of Structural Matrices
Flexibility Matrix
Example
Stiffness Matrix
Mass Matrix
Consistent Mass Matrix Discussion
Damping Matrix Geometric Stiffness External Loading

Consistent Mass Matrix, 2

Consistent Mass Matrix, 2

	Structural Matrices Giacomo Boffi
Pro	Introductory Remarks
■ some convergence theorem of FEM theory holds only if the mass matrix is consistent,	Structural Matrices
■ slightly more accurate results,	Evaluation of
- no need for static conde	Matrices
- no need for static conden	
Contra	
■ M is no more diagonal, heavy computational aggravation,	
static condensation is computationally beneficial, inasmuch it reduces the global	Geometric Stiffness External Loading
number of degrees of freedom.	Choice of Property

Damping Matrix

Damping Matrix

For each element $c_{i j}=\int c(s) \phi_{i}(s) \phi_{j}(s) \mathrm{d} s$ and the damping matrix \mathbf{C} can be assembled from element contributions.
However, using the FEM $\mathbf{C}^{\star}=\boldsymbol{\Psi}^{T} \mathbf{C} \boldsymbol{\Psi}$ is not diagonal and the modal equations are no more uncoupled!

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Mass Matrix Damping Matrix

Example
Geometric Stiffnes
External Loading

Damping Matrix

For each element $c_{i j}=\int c(s) \phi_{i}(s) \phi_{j}(s) \mathrm{d} s$ and the damping matrix \mathbf{C} can be assembled from element contributions.
However, using the FEM $\mathbf{C}^{\star}=\boldsymbol{\Psi}^{T} \mathbf{C} \boldsymbol{\Psi}$ is not diagonal and the modal equations are no more uncoupled!
The alternative is to write directly the global damping matrix, in terms of the underdetermined coefficients \mathfrak{c}_{b},

$$
\mathbf{C}=\sum_{b} \mathfrak{c}_{b} \mathbf{M}\left(\mathbf{M}^{-1} \mathbf{K}\right)^{b}
$$

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Mass Matrix
Damping Matrix
Example
Geometric Stiffnes
External Loading

Damping Matrix

With our definition of \mathbf{C},

$$
\mathbf{C}=\sum_{b} \mathfrak{c}_{b} \mathbf{M}\left(\mathbf{M}^{-1} \mathbf{K}\right)^{b}
$$

Damping Matrix

With our definition of \mathbf{C},

$$
\mathbf{C}=\sum_{b} \mathfrak{c}_{b} \mathbf{M}\left(\mathbf{M}^{-1} \mathbf{K}\right)^{b}
$$

$$
C_{j}=\boldsymbol{\psi}_{j}^{T} \mathbf{C} \boldsymbol{\psi}_{j}=\sum_{b} \mathfrak{c}_{b} \omega_{j}^{2 b}=2 \zeta_{j} \omega_{j}
$$

and we can write a system of linear equations in the \mathfrak{c}_{b}.

Example

We want a fixed, 5% damping ratio for the first three modes, taking note that the modal equation of motion is

Giacomo Boffi

$$
\mathbf{C}=\mathfrak{c}_{0} \mathbf{M}+\mathfrak{c}_{1} \mathbf{K}+\mathfrak{c}_{2} \mathbf{K} \mathbf{M}^{-1} \mathbf{K}
$$

we have

$$
2 \times 0.05\left\{\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right\}=\left[\begin{array}{ccc}
1 & \omega_{1}^{2} & \omega_{1}^{4} \\
1 & \omega_{2}^{2} & \omega_{2}^{4} \\
1 & \omega_{3}^{2} & \omega_{3}^{4}
\end{array}\right]\left\{\begin{array}{l}
\mathfrak{c}_{0} \\
c_{1} \\
c_{2}
\end{array}\right\}
$$

Solving for the c's and substituting above, the resulting damping matrix is orthogonal to every eigenvector of the system, for the first three modes, leads to a modal damping ratio that is equal to 5%.

Structural
Matrices
Flexibility Matrix Example
Stiffness Matrix
Mass Matrix
Damping Matrix
Example
Geometric Stiffness
External Loading

Example

Computing the coefficients $\mathfrak{c}_{0}, \mathfrak{c}_{1}$ and \mathfrak{c}_{2} to have a 5% damping at frequencies $\omega_{1}=2, \omega_{2}=5$ and $\omega_{3}=8$ we have $c_{0}=1200 / 9100$, $\mathfrak{c}_{1}=159 / 9100$ and $\mathfrak{c}_{2}=-1 / 9100$.
Writing
$\zeta(\omega)=\frac{1}{2}\left(\frac{c_{0}}{\omega}+c_{1} \omega+c_{2} \omega^{3}\right)$ we can plot the above function, along with its two term equivalent $\left(c_{0}=10 / 70, c_{1}=1 / 70\right)$.

Two and three terms solutions

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Mass Matrix
Damping Matrix
Example
Geometric Stiffness
External Loading
Choice of
Property
Formulation

Example

Computing the coefficients $\mathfrak{c}_{0}, \mathfrak{c}_{1}$ and \mathfrak{c}_{2} to have a 5% damping at frequencies $\omega_{1}=2, \omega_{2}=5$ and $\omega_{3}=8$ we have $c_{0}=1200 / 9100$, $\mathfrak{c}_{1}=159 / 9100$ and $\mathfrak{c}_{2}=-1 / 9100$.
Writing
$\zeta(\omega)=\frac{1}{2}\left(\frac{c_{0}}{\omega}+c_{1} \omega+c_{2} \omega^{3}\right)$ we can plot the above function, along with its two term equivalent $\left(c_{0}=10 / 70, c_{1}=1 / 70\right)$.
Negative damping? No, thank you: use only an even number of terms.

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Mass Matrix
Damping Matrix
Example
Geometric Stiffness
External Loading
Choice of

Geometric Stiffness

A common assumption is based on a linear approximation, for a beam element

Structural
Matrices
Giacomo Boffi

Introductory
Remarks
Structural Matrices

Evaluation of Structural
Matrices
Flexibility Matrix
Example
Stiffness Matrix
Mass Matrix
Damping Matrix
Geometric Stiffness
External Loading
Choice of
Property Formulation

$$
\mathbf{K}_{\mathrm{G}}=\frac{N}{30 L}\left[\begin{array}{cccc}
36 & -36 & 3 L & 3 L \\
-36 & 36 & -3 L & -3 L \\
3 L & -3 L & 4 L^{2} & -L^{2} \\
3 L & -3 L & -L^{2} & 4 L^{2}
\end{array}\right]
$$

External Loadings

Following the same line of reasoning that we applied to find nodal inertial forces, by the PVD and the use of shape functions we have

$$
p_{i}(t)=\int p(s, t) \phi_{i}(s) \mathrm{d} s
$$

For a constant, uniform load $p(s, t)=\bar{p}=$ const, applied on a beam element,

$$
\mathbf{p}=\bar{p} L\left\{\begin{array}{llll}
\frac{1}{2} & \frac{1}{2} & \frac{L}{12} & -\frac{L}{12}
\end{array}\right\}^{T}
$$

Section 4

Choice of Property Formulation

Introductory Remarks

Structural Matrices

Evaluation of Structural Matrices

Choice of Property Formulation
Static Condensation
Example

Choice of Property Formulation

Simplified Approach

Some structural parameter is approximated, only translational DOF's are retained in dynamic analysis.

Introductory
Remarks
Structural
Matrices
Evaluation of Structural
Matrices
Choice of
Property Formulation Static Condensation

Choice of Property Formulation

	Structural Matrices
Simplified Approach	Introductory Remarks
Some structural parameter is approximated, only translational DOF's are retained in dynamic analysis.	Structural Matrices Evaluation of Structura Matrices
Consistent Approach	Choice of
All structural parameters are computed according to the FEM, and all DOF's are retained in dynamic analysis.	Property Formulation \qquad Example

Choice of Property Formulation

	Structural Matrices Giacomo Boffi
Simplified Approach	Introductory Remarks
Some structural parameter is approximated, only translational DOF's are retained in dynamic analysis.	
Consistent Approach	Choic
All structural parameters are computed according to the FEM, and all DOF's are retained in dynamic analysis.	Property \qquad Example
If we choose a simplified approach, we must use a procedure to remove unneeded structural DOF's from the model that we use for the dynamic analysis.	

Choice of Property Formulation

Simplified Approach

Some structural parameter is approximated, only translational DOF's are retained in dynamic analysis.

Consistent Approach

Introductory
Remarks
Structural
Matrices
Evaluation of Structural Matrices
If we choose a simplified approach, we must use a procedure to remove unneeded structural DOF's from the model that we use for the dynamic analysis.
Enter the Static Condensation Method.

Static Condensation

We have, from a $F E M$ analysis, a stiffnes matrix that uses all nodal $D O F$'s, and from the lumped mass procedure a mass matrix were only translational (and maybe a few rotational) DOF's are blessed with a non zero diagonal term.

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Choice of
Property
Formulation Static Condensation Example

Static Condensation

We have, from a $F E M$ analysis, a stiffnes matrix that uses all nodal $D O F$'s, and from the lumped mass procedure a mass matrix were only translational (and maybe a few rotational) DOF's are blessed with a non zero diagonal term.

Introductory
Remarks
Structural
Matrices
Evaluation of Structural
Matrices
Choice of
Property
Formulation Static Condensation Example

$$
\mathbf{x}=\left\{\begin{array}{ll}
\mathbf{x}_{A} & \mathbf{x}_{B}
\end{array}\right\}^{T}
$$

Static Condensation, 2

After rearranging the DOF's, we must rearrange also the rows (equations) and the columns (force contributions) in the structural matrices, and eventually partition the matrices so that
with

$$
\mathbf{M}_{B A}=\mathbf{M}_{A B}^{T}=\mathbf{0}, \quad \mathbf{M}_{B B}=\mathbf{0}, \quad \mathbf{K}_{B A}=\mathbf{K}_{A B}^{T}
$$

Static Condensation, 2

After rearranging the DOF's, we must rearrange also the rows (equations) and the columns (force contributions) in the structural matrices, and eventually partition the matrices so that

$$
\begin{aligned}
\left\{\begin{array}{c}
\mathbf{f}_{I} \\
\mathbf{0}
\end{array}\right\} & =\left[\begin{array}{ll}
\mathbf{M}_{A A} & \mathbf{M}_{A B} \\
\mathbf{M}_{B A} & \mathbf{M}_{B B}
\end{array}\right]\left\{\begin{array}{l}
\ddot{\mathbf{x}}_{A} \\
\ddot{\mathbf{x}}_{B}
\end{array}\right\} \\
\mathbf{f}_{S} & =\left[\begin{array}{ll}
\mathbf{K}_{A A} & \mathbf{K}_{A B} \\
\mathbf{K}_{B A} & \mathbf{K}_{B B}
\end{array}\right]\left\{\begin{array}{c}
\mathbf{x}_{A} \\
\mathbf{x}_{B}
\end{array}\right\}
\end{aligned}
$$

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Choice of
Property
Formulation Static Condensation Example
with

$$
\mathbf{M}_{B A}=\mathbf{M}_{A B}^{T}=\mathbf{0}, \quad \mathbf{M}_{B B}=\mathbf{0}, \quad \mathbf{K}_{B A}=\mathbf{K}_{A B}^{T}
$$

Finally we rearrange the loadings vector and write...

Static Condensation, 3

... the equation of dynamic equilibrium,

$$
\begin{aligned}
\mathbf{p}_{A} & =\mathbf{M}_{A A} \ddot{\mathbf{x}}_{A}+\mathbf{M}_{A B} \ddot{\mathbf{x}}_{B}+\mathbf{K}_{A A} \mathbf{x}_{A}+\mathbf{K}_{A B} \mathbf{x}_{B} \\
\mathbf{p}_{B} & =\mathbf{M}_{B A} \ddot{\mathbf{x}}_{A}+\mathbf{M}_{B B} \ddot{\mathbf{x}}_{B}+\mathbf{K}_{B A} \mathbf{x}_{A}+\mathbf{K}_{B B} \mathbf{x}_{B}
\end{aligned}
$$

Introductory
Remarks
Structural
Matrices
Evaluation of Structural
Matrices
Choice of
Property
Formulation
Static Condensation

Static Condensation, 3

... the equation of dynamic equilibrium,

$$
\begin{aligned}
\mathbf{p}_{A} & =\mathbf{M}_{A A} \ddot{\mathbf{x}}_{A}+\mathbf{M}_{A B} \ddot{\mathbf{x}}_{B}+\mathbf{K}_{A A} \mathbf{x}_{A}+\mathbf{K}_{A B} \mathbf{x}_{B} \\
\mathbf{p}_{B} & =\mathbf{M}_{B A} \ddot{\mathbf{x}}_{A}+\mathbf{M}_{B B} \ddot{\mathbf{x}}_{B}+\mathbf{K}_{B A} \mathbf{x}_{A}+\mathbf{K}_{B B} \mathbf{x}_{B}
\end{aligned}
$$

solving for \mathbf{x}_{B} in the 2 nd equation and substituting

$$
\begin{aligned}
\mathbf{x}_{B} & =\mathbf{K}_{B B}^{-1} \mathbf{p}_{B}-\mathbf{K}_{B B}^{-1} \mathbf{K}_{B A} \mathbf{x}_{A} \\
\mathbf{p}_{A}-\mathbf{K}_{A B} \mathbf{K}_{B B}^{-1} \mathbf{p}_{B} & =\mathbf{M}_{A A} \ddot{\mathbf{x}}_{A}+\left(\mathbf{K}_{A A}-\mathbf{K}_{A B} \mathbf{K}_{B B}^{-1} \mathbf{K}_{B A}\right) \mathbf{x}_{A}
\end{aligned}
$$

Static Condensation, 4

Going back to the homogeneous problem, with obvious positions we can write

$$
\left(\overline{\mathbf{K}}-\omega^{2} \overline{\mathbf{M}}\right) \boldsymbol{\psi}_{A}=\mathbf{0}
$$

but the $\boldsymbol{\psi}_{A}$ are only part of the structural eigenvectors, because in essentially every application we must consider also the other DOF's, so we write

$$
\boldsymbol{\psi}_{i}=\left\{\begin{array}{l}
\boldsymbol{\psi}_{A, i} \\
\boldsymbol{\psi}_{B, i}
\end{array}\right\} \text {, with } \boldsymbol{\psi}_{B, i}=\mathbf{K}_{B B}^{-1} \mathbf{K}_{B A} \boldsymbol{\psi}_{A, i}
$$

Introductory
Remarks
Structural
Matrices
Evaluation of Structural
Matrices
Choice of
Property
Formulation Static Condensation Example

Example

Structural Matrices

Giacomo Boffi

Introductory
Remarks
Structural
Matrices
Evaluation of
Structural
Matrices
Choice of
Property
Formulation
Static Condensation

$$
\mathbf{K}_{B B}=L^{2}\left[\begin{array}{ll}
6 & 2 \\
2 & 6
\end{array}\right], \mathbf{K}_{B B}^{-1}=\frac{1}{32 L^{2}}\left[\begin{array}{cc}
6 & -2 \\
-2 & 6
\end{array}\right], \mathbf{K}_{A B}=\left[\begin{array}{ll}
3 L & 3 L
\end{array}\right]
$$

The matrix $\overline{\mathbf{K}}$ is

$$
\overline{\mathbf{K}}=\frac{2 E J}{L^{3}}\left(12-\mathbf{K}_{A B} \mathbf{K}_{B B}^{-1} \mathbf{K}_{A B}^{T}\right)=\frac{39 E J}{2 L^{3}}
$$

