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Problem statement

𝑃 +

𝑢(𝑥, 𝑡)

𝑣𝑡

𝐿
𝑥

A uniform beam, (unit mass𝑚, flexural stiffness 𝐸𝐽 and length 𝐿 ) is loaded by a
load 𝑃 , moving with constant velocity 𝑣(𝑡) = 𝑣 in the time interval
0 ≤ 𝑡 ≤ 𝑡0 = 𝐿/𝑣 = 𝑡0.
Plot the response in the interval 0 ≤ 𝑡 ≤ 𝑡0 = 𝐿/𝑣 in terms of 𝑢(𝐿/2, 𝑡) and
𝑀b(𝐿/2, 𝑡).
NB: the beam is at rest for 𝑡 = 0.

Equation of motion

F or an uniform beam, the equation of dynamic equilibrium is

𝑚 𝜕2𝑢(𝑥, 𝑡)
𝜕𝑡2 + 𝐸𝐽 𝜕

4𝑢(𝑥, 𝑡)
𝜕𝑥4 = 𝑝(𝑥, 𝑡).

In our example, the loading function must be defined in terms of 𝛿(𝑥), the Dirac’s
delta distribution,

𝑝(𝑥, 𝑡) = 𝑃 𝛿(𝑥 − 𝑣𝑡).

The Dirac’s delta (or distribution) is defined by

𝛿(𝑥 − 𝑥0) ≡ 0 and න𝑓(𝑥)𝛿(𝑥 − 𝑥0) d𝑥 = 𝑓(𝑥0).



Equation of motion
The solution will be computed by separation of variables

𝑢(𝑥, 𝑡) = 𝑞(𝑡)𝜙(𝑥)

and modal analysis,

𝑢(𝑥, 𝑡) =
∞

෍
𝑛=1

𝑞𝑛(𝑡)𝜙𝑛(𝑥)

The relevant quantities for the modal analysis, obtained solving the eigenvalue
problem that arises from the beam boundary conditions are

𝜙𝑛(𝑥) = sin𝛽𝑛𝑥, 𝛽𝑛 =
𝑛𝜋
𝐿 ,

𝑚𝑛 =
𝑚𝐿
2 , 𝜔2

𝑛 = 𝛽4𝑛
𝐸𝐽
𝑚 = 𝑛4𝜋4 𝐸𝐽

𝑚𝐿4 .

Orthogonality relationships

For an uniform beam, the orthogonality relationships are

𝑚 න
𝐿

0
𝜙𝑛(𝑥)𝜙𝑚(𝑥) d𝑥 = 𝑚𝑛𝛿𝑛𝑚,

𝐸𝐽 න
𝐿

0
𝜙𝑛(𝑥)𝜙ıv

𝑚(𝑥) d𝑥 = 𝑘𝑛𝛿𝑛𝑚 = 𝑚𝑛𝜔2
𝑛𝛿𝑛𝑚.

(the Kroneker’s 𝛿𝑛𝑚 is a completely different thing from Dirac’s 𝛿, OK?).

Decoupling the EOM
Using the orthogonality relationships, we can write an infinity of uncoupled
equation of motion for the modal coordinates.

1 The equation of motion is written in terms of the series representation of
𝑢(𝑥, 𝑡):

𝑚
∞

෍
𝑚=1

𝑞̈𝑚𝜙𝑚 + 𝐸𝐽
∞

෍
𝑚=1

𝑞𝑚𝜙ıv
𝑚 = 𝑃 𝛿(𝑥 − 𝑣𝑡),

2 every term is multiplied by 𝜙𝑛 and integrated over the lenght of the beam

𝑚න
𝐿

0
𝜙𝑛∑

∞
1 𝑞̈𝑚𝜙𝑚 d𝑥+𝐸𝐽න

𝐿

0
𝜙𝑛∑

∞
1 𝑞𝑚𝜙ıv

𝑚 d𝑥 = 𝑃 න
𝐿

0
𝜙𝑛𝛿(𝑥−𝑣𝑡), 𝑛 = 1,… ,∞

3 we use the ortogonality relationships and the definition of 𝛿,

𝑚𝑛𝑞̈(𝑡) + 𝑘𝑛𝑞(𝑡) = 𝑃𝜙𝑛(𝑣𝑡) = 𝑃 sin
𝑛𝜋 𝑣𝑡
𝐿 , 𝑛 = 1,… ,∞.



Solutions
Considering that

‐ the initial conditions are zero for all the modal equations,
‐ for each mode we have a different excitation frequency 𝜔𝑛 = 𝑛𝜋𝑣/𝐿 (and
also 𝛽𝑛 = 𝜔𝑛/𝜔𝑛),

the individual solutions are given by

𝑞𝑛(𝑡) =
𝑃
𝑘𝑛

1
1 − 𝛽2𝑛

(sin𝜔𝑛𝑡 − 𝛽𝑛 sin𝜔𝑛𝑡) , 0 ≤ 𝑡 ≤ 𝐿
𝑣

and, with 𝑘𝑛 = 𝑚𝑛𝜔2
𝑛 =

𝑚𝐿
2 𝑛4𝜋4 𝐸𝐽

𝑚𝐿4 = 𝑛4𝜋4 𝐸𝐽2𝐿3 , it is

𝑞𝑛(𝑡) =
2

𝑛4𝜋4
𝑃𝐿3
𝐸𝐽

1
1 − 𝛽2𝑛

(sin𝜔𝑛𝑡 − 𝛽𝑛 sin𝜔𝑛𝑡) , 0 ≤ 𝑡 ≤ 𝐿
𝑣 .

It is apparent that we have resonance for 𝛽𝑛 = 1.

Critical Velocity
Let’s start from 𝛽1 = 𝜋𝑣/𝐿/𝜔1 = 1 and solve for the velocity, say 𝑣1

𝑣1 = 𝜔1𝐿/𝜋.

It is apparent that 𝑣1 is a critical velocity 𝑣c = 𝑣1 = 𝜔1𝐿/𝜋 that gives a resonance
condition for the first mode response, while for 𝑣 = 2𝑣c the second mode is in
resonance, etc.
With the position 𝑣 = 𝜅𝑣1 it is

𝜔𝑛 = 𝜅𝑛𝜔1 and 𝛽𝑛 = 𝑛𝜅𝜔1/𝑛2𝜔1 = 𝜅/𝑛

and we can rewrite the solution as

𝑞𝑛(𝑡) =
2𝑃𝐿3
𝜋4𝐸𝐽

1
𝑛2(𝑛2 − 𝜅2) ൬sin(

𝜅
𝑛𝜔𝑛𝑡) −

𝜅
𝑛 sin𝜔𝑛𝑡൰ , 0 ≤ 𝑡 ≤ 𝐿

𝑣 .

Adimensional Time Coordinate

Introducing an adimensional time coordinate 𝜉 with 𝑡 = 𝑡0𝜉, noting that
𝜔𝑛 = 𝑛2𝜔1 we can write

𝜅
𝑛𝜔𝑛𝑡 =

𝜅
𝑛𝑛

2𝜔1 𝜉 𝑡0 = 𝜅𝑛(𝑣𝑐𝜋𝐿 )𝜉 𝐿
𝜅𝑣𝑐

= 𝑛𝜋𝜉,

substituting in the solution for mode 𝑛 we have

𝑞𝑛(𝜉) =
2
𝜋4

𝑃𝐿3
𝐸𝐽

1
𝑛2(𝑛2 − 𝜅2) ቆsin(𝑛𝜋𝜉) −

𝜅
𝑛 sin(𝑛

2

𝜅 𝜋𝜉)ቇ , 0 ≤ 𝜉 ≤ 1.



Adimensional Time and Adimensional Position

If we denote with 𝕏(𝑡) the position of the load at time 𝑡, it is 𝕏(𝑡) = 𝑣𝑡 = 𝜉𝐿, or
𝜉 = 𝕏/𝐿 and the expression 𝑢(𝑥, 𝜉) = ∑𝑞𝑛(𝜉)𝜙𝑛(𝑥) can be interpreted as the
displacement in 𝑥 when the load is positioned in 𝜉𝐿.

Displacement and Bending Moment

The displacement and the bending moment are given by

𝑢(𝑥, 𝜉) = 2𝑃𝐿3
𝜋4𝐸𝐽

∞

෍
𝑛=1

1
𝑛2(𝑛2 − 𝜅2) ቆsin(𝑛𝜋𝜉) −

𝜅
𝑛 sin(𝑛

2

𝜅 𝜋𝜉)ቇ sin(𝑛𝜋
𝑥
𝐿),

𝑀b(𝑥, 𝜉) = −𝐸𝐽𝜕
2𝑢(𝑥, 𝜉)
𝜕𝑥2

= 2𝑃𝐿
𝜋2

∞

෍
𝑛=1

1
𝑛2 − 𝜅2 ቆsin(𝑛𝜋𝜉) −

𝜅
𝑛 sin(𝑛

2

𝜅 𝜋𝜉)ቇ sin(𝑛𝜋
𝑥
𝐿).

Normalized Midspan Deflection
If we consider the midspan deflection (bending moment) due to a static load 𝑃 on the
beam, the maximum deflection (bending moment) is expected when the load is placed at
midspan, and it is

𝑢stat(𝐿/2, 1/2) =
𝑃𝐿3
48𝐸𝐽 and 𝑀b stat(𝐿/2, 1/2) =

𝑃𝐿
4 .

Normalizing the midspan displacement with respect to the maximum static displacement,
we write

Δ(𝜉) = 𝑢
𝑢stat

= 96
𝜋4

∞

෍
𝑛=1

1
𝑛2(𝑛2 − 𝜅2) ቆsin(𝑛𝜋𝜉) −

𝜅
𝑛 sin(𝑛

2

𝜅 𝜋𝜉)ቇ sin(𝑛
𝜋
2).

Eventually we introduce a notation for the partial sum of the first 𝑁 terms:

Δ𝑁(𝜉) =
96
𝜋4

𝑁

෍
𝑛=1

1
𝑛2(𝑛2 − 𝜅2) ቆsin(𝑛𝜋𝜉) −

𝜅
𝑛 sin(𝑛

2

𝜅 𝜋𝜉)ቇ sin(𝑛
𝜋
2).



Normalized Midspan Bending Moment

Analogously, normalizing with respect to the maximum static bending moment, it
is

𝜇(𝜉) = 8
𝜋2

∞

෍
𝑛=1

1
𝑛2 − 𝜅2 ቆsin(𝑛𝜋𝜉) −

𝜅
𝑛 sin(𝑛

2

𝜅 𝜋𝜉)ቇ sin(𝑛
𝜋
2),

the partial sum being denoted by

𝜇𝑁(𝜉) =
8
𝜋2

𝑁

෍
𝑛=1

1
𝑛2 − 𝜅2 ቆsin(𝑛𝜋𝜉) −

𝜅
𝑛 sin(𝑛

2

𝜅 𝜋𝜉)ቇ sin(𝑛
𝜋
2).

Error Estimates
To appreciate the approximation inherent in a truncated series, we compare the
truncated series computed for 𝜅 = 10−6 with the static response Δstat(𝜉) = 3𝜉 − 4𝜉3
introducing a percent error function

𝜖𝑢,𝑁(𝜉) = 100 ቆ1 − Δ𝑁(𝜉)|𝜅=10−6
Δstat(𝜉)

ቇ for 0 ≤ 𝜉 ≤ 1/2,
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Using 4 terms (𝑁 = 7) the absolute error is not greater than 1/1000.

Error Estimates
Analogously we can use the midspan bending moment, normalized with respect to 𝑃𝐿/4,
𝜇stat(𝜉) = 2𝜉 to define another percent error function

𝜖𝑀,𝑁 = 100 ቆ1 − 𝜇𝑁(𝜉)|𝜅=10−6
𝜇stat(𝜉)

ቇ
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With 8 terms (𝑁 = 17) terms in the series, still the absolute error is greater than 3%.



The Plots

Eventually, we plot the normalized displacement and the normalized bending
moment for different values of 𝜅, i.e., for different velocities.

For the displacement I used 𝑁 = 11 while for the bending moment I used 𝑁 = 25.
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