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Problem statement

lu(x, t)

A uniform beam, (unit mass m, flexural stiffness EJ and length L ) is loaded by a
load P, moving with constant velocity v(t) = v in the time interval
OStSt():L/‘U:to.

Plot the response in the interval 0 < ¢ < ty = L/v in terms of u(/2,t) and
Mb(L/Z, t)

NB: the beam is at rest for t = 0.

Equation of motion

F or an uniform beam, the equation of dynamic equilibrium is

d%u(x,t) E *u(x,t) .
KT J =g =PeD).

In our example, the loading function must be defined in terms of § (), the Dirac’s
delta distribution,

p(x,t) = P5(x — vt).

The Dirac’s delta (or distribution) is defined by

S(x—x4)=0 and ff(x)S(x —Xo) dx = f(xg).




Equation of motion

The solution will be computed by separation of variables

u(x, t) = q(t)p(x)

and modal analysis,
w5, 6) = ) gu(Opn()
n=1

The relevant quantities for the modal analysis, obtained solving the eigenvalue
problem that arises from the beam boundary conditions are

] nm
¢n(x) = S'n.anr .Bn = T'
mL EJ EJ
My ===, wp =P =ntnt

Orthogonality relationships

For an uniform beam, the orthogonality relationships are
L
m f Pn(X)Ppm (x) dx = My, Spm,
0

L
EJ] f ¢n(x)¢7l‘\rl1(x) dx = knbpm = mnw1216nm-
0

(the Kroneker’s & ,,,,, is @ completely different thing from Dirac’s §, OK?).

Decoupling the EOM

Using the orthogonality relationships, we can write an infinity of uncoupled
equation of motion for the modal coordinates.
@ The equation of motion is written in terms of the series representation of
u(x,t):

m Z Gmbm + EJ Z Gm®Pm = P 6(x —vt),
m=1 m=1
@® every term is multiplied by ¢,, and integrated over the lenght of the beam

L - L - L
m f S b A +EJ j S Gl dx = P j S (r—vE), n =1, ..
0 0 0

© we use the ortogonality relationships and the definition of §,
nm vt
L )

mpG(t) + knq(t) = P ¢pp(vt) = P sin n=1,..,0.




Solutions

Considering that
- the initial conditions are zero for all the modal equations,
- for each mode we have a different excitation frequency w,, = nmv/L (and
also By = wp [wy),
the individual solutions are given by

®) i (sin @yt — By Sin wpt) 0<t<L
= ———— (sinwpt — By sinwy,t), <t<-—
Qn kn 1 _ T% n n n v
mL E E
and, with k,, = m,w?2 = - n4n4m—i4 = n4n42—l{3, it is
2 PL3 1 o _ L
qn(t):n4n4 B 1o %(smwnt—ﬁnsmwnt), OStS;.

It is apparent that we have resonance for 5, = 1.

Critical Velocity

Let’s start from f; = ®v/L/w, = 1 and solve for the velocity, say v;
V= wlL/TL'.

It is apparent that v, is a critical velocity v. = v; = w;L/m that gives a resonance
condition for the first mode response, while for v = 2 v, the second mode is in
resonance, etc.

With the position v = kv, itis

w, = Knw; and f, =nkwi/n2yh, = K/n

and we can rewrite the solution as

ST

2PL3 1 K K
qn(t) = TE] n2 (= kD) (sm(;wnt) — _sin wnt>, 0<st<

Adimensional Time Coordinate

Introducing an adimensional time coordinate & with t = ty¢&, noting that
wy, = n®w; we can write
K K V.

—wnt = —nfw, Ety = kn

L —
)fK_UC - nnfl

substituting in the solution for mode n we have

2 PIL3 1

Qn(g) = F E_] m (sin(nﬂf) - %SIH(%E%)), 0< f < 1.




Adimensional Time and Adimensional Position

If we denote with X(t) the position of the load at time t, it is X(t) = vt = €L, or
& = X/1 and the expression u(x, &) = Y. q,(§)¢,(x) can be interpreted as the
displacement in x when the load is positioned in ¢L.

Displacement and Bending Moment

The displacement and the bending moment are given by

2PL3 1 _ Kk n? x
u(x, &) = E] 2% —x3) <sm(nn€) - sm(7n€)> sm(nnz),
n=1
2
M, (x,§) = _E]M

x2

d
_ 2PL it 1 ‘ Kk n? ‘ x
= Z R <sm(nnf) -3 sm(7nf)> sm(nnz)_

Normalized Midspan Deflection

If we consider the midspan deflection (bending moment) due to a static load P on the
beam, the maximum deflection (bending moment) is expected when the load is placed at
midspan, and it is

3

PL
Ugat (L/2,1/2) = and My 0t (L/2,1/2) = T

48E]
Normalizing the midspan displacement with respect to the maximum static displacement,
we write
AGE u 965: 1 _ Kk = n? oom
= = — —————= | sin(nné) — —sin(—mné) |sin(n-).
©) = s = 8 2, e =y (SN0 — 5 ST Jsin(n)
n=

Eventually we introduce a notation for the partial sum of the first N terms:
N

96 1 _ K n? _om
@) = = Z e <sm(nn§) - = sm(7n€)> sin(n).

n=1




Normalized Midspan Bending Moment

Analogously, normalizing with respect to the maximum static bending moment, it
is

B 8 © 1 ' K . nZ . T
ng) = o nz::l o R—) <sm(n7t€) - sm(7n€)> sm(nz),

the partial sum being denoted by

8 S 1 _ Kk  n? U 4
() = — ; s <sm(nn€) - s|n(7nf)) sin(n).

Error Estimates

To appreciate the approximation inherent in a truncated series, we compare the
truncated series computed for k = 107% with the static response Ag,, (&) = 3¢ — 483
introducing a percent error function

AN(«S)IK=10—6>
€ =100{1 - ——— for0 <& <12
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Using 4 terms (N = 7) the absolute error is not greater than 1/1000.

Error Estimates

Analogously we can use the midspan bending moment, normalized with respect to PL/4,
Ustat (§) = 2& to define another percent error function

UN (€ lic=10-6
eyny =100 (1 — ————
Ustat ($)
20
, 10
=0 e T s
& 10 e
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-30 | | I
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With 8 terms (N = 17) terms in the series, still the absolute error is greater than 3%.




The Plots

Eventually, we plot the normalized displacement and the normalized bending
moment for different values of k, i.e., for different velocities.

For the displacement | used N = 11 while for the bending moment | used N = 25.
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