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Intro

Discrete models
Until now the dynamical behavior of structures has been modeled using discrete
degrees of freedom, as in the Finite Element Method procedure, and in many cases
we have found that we are able to reduce the number of dynamical degrees of
freedom using the static condensation procedure (multistory buildings are an
excellent example of structures for which a few dynamical degrees of freedom can
describe the dynamical response).
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Continuous models
For different type of structures (e.g., bridges, chimneys), a lumped mass model is not
an option. While a FEmodel is always appropriate, there is no apparent way of
lumping the structural masses in a way that is obviously correct, and a great number
of degrees of freedom must be retained in the dynamic analysis.
An alternative to detailed FEmodels is deriving the equation of motion, in terms of
partial derivatives differential equation, directly for the continuous systems.
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Continuous Systems

There are many different continuous systems whose dynamics are approachable with
the instruments of classical mechanics,

taught strings,
axially loaded rods,
beams in flexure,
plates and shells,
3D solids.

In the following, we will focus our interest on beams in flexure.
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EoM for an undamped beam

L

𝑥 𝑚(𝑥), 𝐸𝐽(𝑥)

𝑝(𝑥, 𝑡)

𝑢(𝑥, 𝑡)

𝑀

𝑝 d𝑥

𝑀
+

𝜕𝑀 𝜕𝑥
d𝑥
𝑉
+

𝜕𝑉 𝜕𝑥
d𝑥

d𝑥
d𝑓I = 𝑚 d𝑥 𝜕2𝑢

𝜕𝑡2

d𝑓
I

𝑉

At the left, a straight beam with characteristic
depending on position 𝑥: 𝑚 = 𝑚(𝑥) and
𝐸𝐽 = 𝐸𝐽(𝑥); with the signs conventions for
displacements, accelerations, forces and
bending moments reported left, the equation
of vertical equilibrium for an infinitesimal
slice of beam is

𝑉−(𝑉+ 𝜕𝑉
𝜕𝑥 d𝑥)+𝑚 d𝑥𝜕

2𝑢
𝜕𝑡2 −𝑝(𝑥, 𝑡) d𝑥 = 0.

Rearranging and simplifying d𝑥,

𝜕𝑉
𝜕𝑥 = 𝑚𝜕2𝑢

𝜕𝑡2 − 𝑝(𝑥, 𝑡).
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Equation of motion, 2

The rotational equilibrium, neglecting rotational inertia and simplifying d𝑥 is

𝜕𝑀
𝜕𝑥 = 𝑉.

Deriving with respect to 𝑥 both members of the rotational equilibrium equation, it is

𝜕𝑉
𝜕𝑥 = 𝜕2𝑀

𝜕𝑥2

Substituting in the equation of vertical equilibrium and rearranging

𝑚(𝑥)𝜕
2𝑢
𝜕𝑡2 − 𝜕2𝑀

𝜕𝑥2 = 𝑝(𝑥, 𝑡)
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Equation of motion, 3

Using the moment‐curvature relationship,

𝑀 = −𝐸𝐽𝜕
2𝑢
𝜕𝑥2

and substituting in the equation above we have the equation of dynamic equilibrium

𝑚(𝑥)𝜕
2𝑢
𝜕𝑡2 + 𝜕2

𝜕𝑥2 𝐸𝐽(𝑥)𝜕
2𝑢
𝜕𝑥2 = 𝑝(𝑥, 𝑡).

Partial Derivatives Differential Equation
In this formulation of the equation of equilibrium we have

one equation of equilibrium

one unknown, 𝑢(𝑥, 𝑡).
It is a partial derivatives differential equation because we have the derivatives of 𝑢 with respect to 𝑥 and 𝑡
simultaneously in the same equation.
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Equation of motion, 3

Using the moment‐curvature relationship,
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Partial Derivatives Differential Equation
In this formulation of the equation of equilibrium we have

one equation of equilibrium
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It is a partial derivatives differential equation because we have the derivatives of 𝑢 with respect to 𝑥 and 𝑡
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Effective Earthquake Loading

If our continuous structure is subjected to earthquake excitation, we will write, as
usual, 𝑢TOT = 𝑢(𝑥, 𝑡) + 𝑢g(𝑡) and, consequently,

�̈�TOT = �̈�(𝑥, 𝑡) + �̈�g(𝑡)

and, using the usual considerations,

𝑝eff(𝑥, 𝑡) = −𝑚(𝑥)�̈�g(𝑡).

In 𝑝eff we have a separation of variables: in the case of earthquake excitation all the
considerations we have done on expressing the response in terms of static modal
responses and pseudo/acceleration response will be applicable.
Only a word of caution, in every case we must consider the component of earthquake
acceleration parallel to the transverse motion of the beam.
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If our continuous structure is subjected to earthquake excitation, we will write, as
usual, 𝑢TOT = 𝑢(𝑥, 𝑡) + 𝑢g(𝑡) and, consequently,

�̈�TOT = �̈�(𝑥, 𝑡) + �̈�g(𝑡)

and, using the usual considerations,

𝑝eff(𝑥, 𝑡) = −𝑚(𝑥)�̈�g(𝑡).

In 𝑝eff we have a separation of variables: in the case of earthquake excitation all the
considerations we have done on expressing the response in terms of static modal
responses and pseudo/acceleration response will be applicable.

Only a word of caution, in every case we must consider the component of earthquake
acceleration parallel to the transverse motion of the beam.
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Effective Earthquake Loading

If our continuous structure is subjected to earthquake excitation, we will write, as
usual, 𝑢TOT = 𝑢(𝑥, 𝑡) + 𝑢g(𝑡) and, consequently,

�̈�TOT = �̈�(𝑥, 𝑡) + �̈�g(𝑡)

and, using the usual considerations,

𝑝eff(𝑥, 𝑡) = −𝑚(𝑥)�̈�g(𝑡).

In 𝑝eff we have a separation of variables: in the case of earthquake excitation all the
considerations we have done on expressing the response in terms of static modal
responses and pseudo/acceleration response will be applicable.
Only a word of caution, in every case we must consider the component of earthquake
acceleration parallel to the transverse motion of the beam.
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Free Vibrations

For free vibrations, 𝑝(𝑥, 𝑡) ≡ 0 and the equation of equilibrium for an infinitesimal
slice of beam is

𝑚(𝑥)𝜕
2𝑢
𝜕𝑡2 + 𝜕2

𝜕𝑥2 𝐸𝐽(𝑥)𝜕
2𝑢
𝜕𝑥2 = 0.

Using separation of variables, with the following notations,

𝑢(𝑥, 𝑡) = 𝑞(𝑡)𝜙(𝑥), 𝜕𝑢𝜕𝑡 = �̇�𝜙, 𝜕𝑢𝜕𝑥 = 𝑞𝜙′

etc for higher order derivatives, we have

𝑚(𝑥)�̈�(𝑡)𝜙(𝑥) + 𝑞(𝑡) [𝐸𝐽(𝑥)𝜙′′(𝑥)]′′ = 0.
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Free Vibrations, 2

Dividing both terms in

𝑚(𝑥)�̈�(𝑡)𝜙(𝑥) + 𝑞(𝑡) [𝐸𝐽(𝑥)𝜙′′(𝑥)]′′ = 0.

by𝑚(𝑥)𝑢(𝑥, 𝑡) = 𝑚(𝑥)𝑞(𝑡)𝜙(𝑥) and rearranging, we have

−�̈�(𝑡)𝑞(𝑡) =
[𝐸𝐽(𝑥)𝜙′′(𝑥)]′′

𝑚(𝑥)𝜙(𝑥) .

The left member is a function of time only, the right member a function of position
only, and they are equal...

this is possible if and only if both terms are constant, let’s
name this constant 𝜔2 and write

−�̈�(𝑡)𝑞(𝑡) =
[𝐸𝐽(𝑥)𝜙′′(𝑥)]′′

𝑚(𝑥)𝜙(𝑥) = 𝜔2,
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Free Vibrations, 2
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Free Vibrations, 3

From the previous equations we can derive the following two

�̈� + 𝜔2𝑞 = 0
[𝐸𝐽(𝑥)𝜙′′(𝑥)]′′ = 𝜔2𝑚(𝑥)𝜙(𝑥)

The first equation, �̈� + 𝜔2𝑞 = 0, has the homogeneous integral

𝑞(𝑡) = 𝐴 sin𝜔𝑡 + 𝐵 cos𝜔𝑡

so that our free vibration solution is

𝑢(𝑥, 𝑡) = 𝜙(𝑥) (𝐴 sin𝜔𝑡 + 𝐵 cos𝜔𝑡) ,

the free vibration shape 𝜙(𝑥) will be modulated by a harmonic function of time.

To find something about 𝜔’s and 𝜙’s (that is, the eigenvalues and the eigenfunctions of our
problem), we have to introduce an important simplification.
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Free Vibrations, 3

From the previous equations we can derive the following two
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Eigenpairs of a uniform beam

With 𝐸𝐽 = const. and𝑚 = const., we have from the second equation in previous slide,

𝐸𝐽𝜙IV −𝜔2𝑚𝜙 = 0,

with 𝛽4 = 𝜔2𝑚
𝐸𝐽 it is

𝜙IV − 𝛽4𝜙 = 0
a differential equation of 4th order with constant coefficients.

Substituting𝜙 = exp 𝑠𝑡 and simplifying,
𝑠4 − 𝛽4 = 0,

the roots of the associated polynomial are

𝑠1 = 𝛽, 𝑠2 = −𝛽, 𝑠3 = 𝑖𝛽, 𝑠4 = −𝑖𝛽

and the general integral is

𝜙(𝑥) = 𝒜 sin𝛽𝑥 + ℬ cos𝛽𝑥 + 𝒞 sinh𝛽𝑥 + 𝒟 cosh𝛽𝑥
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Constants of Integration

For a uniform beam in free vibration, the general integral is

𝜙(𝑥) = 𝒜 sin𝛽𝑥 + ℬ cos𝛽𝑥 + 𝒞 sinh𝛽𝑥 + 𝒟 cosh𝛽𝑥

In this expression we see 5 parameters, the 4 constants of integration and the wave number 𝛽 (further
consideration shows that the constants can be arbitrarily scaled).
In general for the transverse motion of a segment of beam supported at the extremes we can write
exactly 4 equations expressing boundary conditions, either from kinematic or static considerations.

All these boundary conditions

lead to linear, homogeneous equation where

the coefficients of the equations depend on the parameter 𝛽.
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Eigenvalues and eigenfunctions

Imposing the boundary conditions give a homogeneous linear system with coefficients
depending on 𝛽, hence:

a non trivial solution is possible only for particular values of 𝛽, for which the
determinant of the matrix of coefficients is equal to zero and
the constants are known within a proportionality factor.

In the case ofMDOF systems, the determinant’s equation is an algebraic equation of
order 𝑁, giving exactly 𝑁 eigenvalues, now the equation to be solved is a
transcendental equation (examples from the next slide), with an infinity of solutions.
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In the case ofMDOF systems, the determinant’s equation is an algebraic equation of
order 𝑁, giving exactly 𝑁 eigenvalues, now the equation to be solved is a
transcendental equation (examples from the next slide), with an infinity of solutions.
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Simply supported beam

Consider a simply supported uniform beam of length 𝐿, displacements at both ends
must be zero, as well as the bending moments:

𝜙(0) = ℬ + 𝒟 = 0, 𝜙(𝐿) = 0,
−𝐸𝐽𝜙′′(0) = 𝛽2𝐸𝐽(ℬ − 𝒟) = 0, −𝐸𝐽𝜙′′(𝐿) = 0.

The conditions for the left support require that ℬ = 𝒟 = 0

Now, we can write the equations for the right support as

𝜙(𝐿) = 𝒜 sin𝛽𝐿 + 𝒞 sinh𝛽𝐿 = 0
−𝐸𝐽𝜙′′(𝐿) = 𝛽2𝐸𝐽(𝒜 sin𝛽𝐿 − 𝒞 sinh𝛽𝐿) = 0

or
+ sin𝛽𝐿 + sinh𝛽𝐿
+ sin𝛽𝐿 − sinh𝛽𝐿

𝒜
𝒞 = 0

0 .
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Simply supported beam, 2
For a simply supported beam we have + sin𝛽𝐿 + sinh𝛽𝐿

+ sin𝛽𝐿 − sinh𝛽𝐿
𝒜
𝒞 = 0

0 .

The determinant is −2 sin𝛽𝐿 sinh𝛽𝐿, equating to zero with the understanding that
sinh𝛽𝐿 ≠ 0 if 𝛽 ≠ 0 results in

sin𝛽𝐿 = 0.
All positive 𝛽 solutions are given by

𝛽𝐿 = 𝑛𝜋

with 𝑛 = 1,… ,∞. We have an infinity of eigenvalues,

𝛽𝑛 =
𝑛𝜋
𝐿 and 𝜔𝑛 = 𝛽2 𝐸𝐽

𝑚 = 𝑛2𝜋2 𝐸𝐽
𝑚𝐿4

and of eigenfunctions 𝜙1 = sin
𝜋𝑥
𝐿 , 𝜙2 = sin

2𝜋𝑥
𝐿 , 𝜙3 = sin

3𝜋𝑥
𝐿 , ⋯
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Simply supported beam, 2
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Cantilever beam

For 𝑥 = 0, we have zero displacement and zero rotation

𝜙(0) = ℬ + 𝒟 = 0, 𝜙′(0) = 𝛽(𝒜 + 𝒞) = 0,

for 𝑥 = 𝐿, both bending moment and shear must be zero

−𝐸𝐽𝜙″(𝐿) = 0, −𝐸𝐽𝜙‴(𝐿) = 0.

Substituting the expression of the general integral, with 𝒟 = −ℬ, 𝒞 = −𝒜 from the
left end equations, in the right end equations and simplifying

sinh𝛽𝐿 + sin𝛽𝐿 cosh𝛽𝐿 + cos𝛽𝐿
cosh𝛽𝐿 + cos𝛽𝐿 sinh𝛽𝐿 − sin𝛽𝐿

𝒜
ℬ = 0

0 .
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Cantilever beam, 2

Imposing a zero determinant results in

(cosh2 𝛽𝐿 − sinh2 𝛽𝐿) + (sin2 𝛽𝐿 + cos2 𝛽𝐿) + 2 cos𝛽𝐿 cosh𝛽𝐿 =
= 2(1 + cos𝛽𝐿 cosh𝛽𝐿) = 0

Rearranging, cos𝛽𝐿 = −(cosh𝛽𝐿)−1 and plotting these functions on the same graph

-0.3
-0.2
-0.1

 0

0.5π 1.5π 2.5π 3.5π 4.5π

cos(βL) -1/cosh(βL)

it is 𝛽1𝐿 = 1.8751 and 𝛽2𝐿 = 4.6941, while for 𝑛 = 3, 4, … with good approximation
it is 𝛽𝑛𝐿 ≈

2𝑛−1
2 𝜋.
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Cantilever beam, 3

Eigenvectors are given by

𝜙𝑛(𝑥) = 𝐶𝑛 (cosh𝛽𝑛𝑥−cos𝛽𝑛𝑥)−
cosh𝛽𝑛𝐿+cos𝛽𝑛𝐿
sinh𝛽𝑛𝐿+sin𝛽𝑛𝐿

(sinh𝛽𝑛𝑥−sin𝛽𝑛𝑥)

 0

 0.5

 1

 0  0.25  0.5  0.75  1

n=1 2 3 4 5

Above, in abscissas 𝑥/𝐿 and in ordinates 𝜙𝑛(𝑥) for the first 5 modes of vibration of
the cantilever beam.

n 1 2 3 4 5
𝛽𝑛𝐿 1.8751 4.6941 7.8548 10.9962 ≈ 4.5𝜋

𝜔 𝑚𝐿4
𝐸𝐽 3.516 22.031 61.70 120.9 ⋯
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Other Boundary Conditions

It is possible that
the beam is supported not by a fixed constraint but by a spring, either
extensional or flexural,
the beam at its end supports a lumped mass, with inertia and possibly rotatory
inertia.
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Elastic Support

A beam is supported in 𝐿 by a spring 𝑘 = 𝜅 𝐸𝐽/𝐿3, to write the relevant boundary
condition we have to impose the vertical equilibrium 𝑉 𝑓𝑠 where

𝑉 = −𝐸𝐽𝜕
3𝑢
𝜕𝑥3 = −𝐸𝐽𝜕

3𝜙
𝜕𝑥3 𝑞(𝑡), 𝑓𝑠 = 𝑘𝑢 = 𝜅𝐸𝐽𝐿3 𝜙(𝑥)𝑢(𝑡).

If we introduce the idea of taking the derivative with respect to 𝑏 = 𝛽𝑥, it is
𝜕𝜙/𝜕𝑥 = 𝛽 𝜕𝜙/𝜕𝑏 and the equation of equilibrium is

𝜅𝐸𝐽𝐿3 𝜙(𝑥)𝑢(𝑡) − 𝐸𝐽𝛽3𝜕
3𝜙
𝜕𝑏3 𝑞(𝑡) = 0 ⟹ 𝜅𝜙 − (𝛽𝐿)3 𝜙‴ = 0.

We have again an homogeneous equation with coefficients depending on 𝛽𝐿.
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Supported Mass

A beam supports, in 𝐿, a mass𝑀 = 𝜇𝑚𝐿. The relevant boundary condition is again an
equation of equilibrium, 𝑉 𝑓𝑖 where 𝑓𝑖 = −𝑀 𝜕2𝑢/𝜕𝑡2 = −𝑀 𝜙𝜕2𝑞/𝜕𝑡2, but

we
know that 𝑞(𝑡), solution of the free vibration problem, is a harmonic function, with
frequency 𝜔 so it is 𝑓𝑖 = 𝜇𝑚𝐿𝜔2𝜙𝑞(𝑡) and the equation of equilibrium multiplied by
𝛽 is

𝜇𝑚(𝛽𝐿)𝜔2𝜙 𝑞(𝑡) + 𝐸𝐽𝛽4𝜕
3𝜙
𝜕𝑏3 𝑞(𝑡) = 0.

But 𝛽4 = 𝑚𝜔2/𝐸𝐽 so that, substituting and simplifying, we have

𝜇𝑚(𝛽𝐿)𝜔2𝜙 𝑞(𝑡) + 𝐸𝐽𝜔2 𝑚
𝐸𝐽

𝜕3𝜙
𝜕𝑏3 𝑞(𝑡) = 0 ⟹ 𝜇(𝛽𝐿)𝜙 + 𝜙‴ = 0.
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A beam supports, in 𝐿, a mass𝑀 = 𝜇𝑚𝐿. The relevant boundary condition is again an
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Supported Mass

A beam supports, in 𝐿, a mass𝑀 = 𝜇𝑚𝐿. The relevant boundary condition is again an
equation of equilibrium, 𝑉 𝑓𝑖 where 𝑓𝑖 = −𝑀 𝜕2𝑢/𝜕𝑡2 = −𝑀 𝜙𝜕2𝑞/𝜕𝑡2, but we
know that 𝑞(𝑡), solution of the free vibration problem, is a harmonic function, with
frequency 𝜔 so it is 𝑓𝑖 = 𝜇𝑚𝐿𝜔2𝜙𝑞(𝑡) and the equation of equilibrium multiplied by
𝛽 is

𝜇𝑚(𝛽𝐿)𝜔2𝜙 𝑞(𝑡) + 𝐸𝐽𝛽4𝜕
3𝜙
𝜕𝑏3 𝑞(𝑡) = 0.

But 𝛽4 = 𝑚𝜔2/𝐸𝐽 so that, substituting and simplifying, we have

𝜇𝑚(𝛽𝐿)𝜔2𝜙 𝑞(𝑡) + 𝐸𝐽𝜔2 𝑚
𝐸𝐽

𝜕3𝜙
𝜕𝑏3 𝑞(𝑡) = 0 ⟹

𝜇(𝛽𝐿)𝜙 + 𝜙‴ = 0.
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Mode Orthogonality

We will demonstrate mode orthogonality for a restricted set of of boundary
conditions, i.e., disregarding elastic supports and supported masses. In the beginning
we have, for 𝑛 = 𝑟,

[𝐸𝐽(𝑥)𝜙″𝑟 (𝑥)]
″ = 𝜔2

𝑟𝑚(𝑥)𝜙𝑟(𝑥).
Pre‐multiply both members by 𝜙𝑠(𝑥) and integrate over the length of the beam gives
you

𝐿

0
𝜙𝑠(𝑥) [𝐸𝐽(𝑥)𝜙″𝑟 (𝑥)]

″ d𝑥 = 𝜔2
𝑟

𝐿

0
𝜙𝑠(𝑥)𝑚(𝑥)𝜙𝑟(𝑥) d𝑥.
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Mode Orthogonality, 2

The left member can be integrated by parts, two times, as in

𝐿

0
𝜙𝑠(𝑥) [𝐸𝐽(𝑥)𝜙″𝑟 (𝑥)]

″ d𝑥 =

𝜙𝑠(𝑥) [𝐸𝐽(𝑥)𝜙″𝑟 (𝑥)]
′ 𝐿

0
− 𝜙′𝑠(𝑥)𝐸𝐽(𝑥)𝜙″𝑟 (𝑥)

𝐿

0
+

𝐿

0
𝜙″𝑠 (𝑥)𝐸𝐽(𝑥)𝜙″𝑟 (𝑥) d𝑥

but the terms in brackets are always zero, the first being the product of end
displacement by end shear, the second the product of end rotation by bending
moment, and for fixed constraints or free end one of the two terms must be zero. So
it is 𝐿

0
𝜙″𝑠 (𝑥)𝐸𝐽(𝑥)𝜙″𝑟 (𝑥) d𝑥 = 𝜔2

𝑟
𝐿

0
𝜙𝑠(𝑥)𝑚(𝑥)𝜙𝑟(𝑥) d𝑥.
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Mode Orthogonality, 2

The left member can be integrated by parts, two times, as in

𝐿

0
𝜙𝑠(𝑥) [𝐸𝐽(𝑥)𝜙″𝑟 (𝑥)]

″ d𝑥 =

𝜙𝑠(𝑥) [𝐸𝐽(𝑥)𝜙″𝑟 (𝑥)]
′ 𝐿

0
− 𝜙′𝑠(𝑥)𝐸𝐽(𝑥)𝜙″𝑟 (𝑥)

𝐿

0
+

𝐿

0
𝜙″𝑠 (𝑥)𝐸𝐽(𝑥)𝜙″𝑟 (𝑥) d𝑥

but the terms in brackets are always zero, the first being the product of end
displacement by end shear, the second the product of end rotation by bending
moment, and for fixed constraints or free end one of the two terms must be zero. So
it is 𝐿

0
𝜙″𝑠 (𝑥)𝐸𝐽(𝑥)𝜙″𝑟 (𝑥) d𝑥 = 𝜔2

𝑟
𝐿

0
𝜙𝑠(𝑥)𝑚(𝑥)𝜙𝑟(𝑥) d𝑥.
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Mode Orthogonality, 3

We write the last equation exchanging the roles of 𝑟 and 𝑠 and subtract from the
original,

𝐿

0
𝜙″𝑠 (𝑥)𝐸𝐽(𝑥)𝜙″𝑟 (𝑥) d𝑥 −

𝐿

0
𝜙″𝑟 (𝑥)𝐸𝐽(𝑥)𝜙″𝑠 (𝑥) d𝑥 =

𝜔2
𝑟

𝐿

0
𝜙𝑠(𝑥)𝑚(𝑥)𝜙𝑟(𝑥) d𝑥 − 𝜔2

𝑠
𝐿

0
𝜙𝑟(𝑥)𝑚(𝑥)𝜙𝑠(𝑥) d𝑥.

This obviously can be simplified giving

(𝜔2
𝑟 − 𝜔2

𝑠 )
𝐿

0
𝜙𝑟(𝑥)𝑚(𝑥)𝜙𝑠(𝑥) d𝑥 = 0

implying that, for 𝜔2
𝑟 ≠ 𝜔2

𝑠 the modes are orthogonal with respect to the mass
distribution, ∫𝜙𝑠𝜙𝑟𝑚 d𝑥 = 𝛿𝑟𝑠𝑚𝑟 .
It is then easy to show that ∫𝜙″𝑠𝜙″𝑟𝐸𝐽 d𝑥 = 𝛿𝑟𝑠𝑚𝑟𝜔2

𝑟 .



Continuous
Systems,
Infinite

Degrees of
Freedom

Giacomo Boffi

Continuous
Systems

Beams in
Flexure

Free Vibrations

Modal Analysis
Forced Response

Earthquake Response

Forced dynamic response

With 𝑢(𝑥, 𝑡) = ∑∞1 𝜙𝑚(𝑥)𝑞𝑚(𝑡), the equation of motion can be written

∞

1
𝑚(𝑥)𝜙𝑚(𝑥)�̈�𝑚(𝑡) +

∞

1
[𝐸𝐽(𝑥)𝜙″𝑚(𝑥)]

″ 𝑞𝑚(𝑡) = 𝑝(𝑥, 𝑡)

pre‐multiplying by 𝜙𝑛 and integrating each sum and the loading term gives the
equation

∞

1

𝐿

0
𝜙𝑛(𝑥)𝑚(𝑥)𝜙𝑚(𝑥)�̈�𝑚(𝑡) d𝑥+

∞

1

𝐿

0
𝜙𝑛(𝑥) [𝐸𝐽(𝑥)𝜙″𝑚(𝑥)]

″ 𝑞𝑚(𝑡) d𝑥 =
𝐿

0
𝜙𝑛(𝑥)𝑝(𝑥, 𝑡) d𝑥.
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Forced dynamic response, 2

By the orthogonality of the eigenfunctions this can be simplified to

𝑚𝑛�̈�𝑛(𝑡) + 𝑘𝑛𝑞𝑛(𝑡) = 𝑝𝑛(𝑡), 𝑛 = 1, 2, … ,∞

with

𝑚𝑛 =
𝐿

0
𝜙𝑛𝑚𝜙𝑛 d𝑥, 𝑘𝑛 =

𝐿

0
𝜙𝑛 [𝐸𝐽𝜙″𝑛]

″ d𝑥,

and 𝑝𝑛(𝑡) =
𝐿

0
𝜙𝑛𝑝(𝑥, 𝑡) d𝑥.

For free ends and/or fixed supports, 𝑘𝑛 = ∫𝐿0 𝜙″𝑛𝐸𝐽𝜙″𝑛 d𝑥.
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Earthquake response

Consider an effective earthquake load, 𝑝(𝑥, 𝑡) = 𝑚(𝑥)�̈�g(𝑡), with

ℒ𝑛 =
𝐿

0
𝜙𝑛(𝑥)𝑚(𝑥) d𝑥, Γ𝑛 =

ℒ𝑛
𝑚𝑛

,

the modal equation of motion can be written (with an obvious generalization)

�̈�𝑛 + 2𝜔𝑛𝜁𝑛�̇�𝑛 + 𝜔2
𝑛𝑞 = −Γ𝑛�̈�g(𝑡).

The modal response, analogously to the case of discrete models, is the product of the
modal participation factor and the pseudo‐displacement response,

𝑞𝑛(𝑡) = Γ𝑛𝐷𝑛(𝑡).
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Earthquake response, 2

Modal contributions can be computed directly, e.g.

𝑢𝑛(𝑥, 𝑡) = Γ𝑛𝜙𝑛(𝑥)𝐷𝑛(𝑡),
𝑀𝑛(𝑥, 𝑡) = −Γ𝑛𝐸𝐽(𝑥)𝜙″𝑛(𝑥)𝐷𝑛(𝑡),

or can be computed from the equivalent static forces,

𝑓𝑠(𝑥, 𝑡) = [𝐸𝐽(𝑥)𝑢(𝑥, 𝑡)″]″ .
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Earthquake response, 3

The modal contributions to equiv. static forces are

𝑓𝑠𝑛(𝑥, 𝑡) = Γ𝑛 [𝐸𝐽(𝑥)𝜙𝑛(𝑥)″]
″ 𝐷𝑛(𝑡),

that, because it is
[𝐸𝐽(𝑥)𝜙′′(𝑥)]′′ = 𝜔2𝑚(𝑥)𝜙(𝑥)

can be written in terms of the mass distribution and of the pseudo‐acceleration
response 𝐴𝑛(𝑡) = 𝜔2

𝑛𝐷𝑛(𝑡)

𝑓𝑠𝑛(𝑥, 𝑡) = Γ𝑛𝑚(𝑥)𝜙𝑛(𝑥)𝜔2
𝑛𝐷𝑛(𝑡) = Γ𝑛𝑚(𝑥)𝜙𝑛(𝑥)𝐴𝑛(𝑡).
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Earthquake response, 4
The effective load is proportional to the mass distribution, and we can do a modal
mass decomposition in the same way that we had forMDOF systems,
𝑚(𝑥) = ∑𝑟𝑛(𝑥) = ∑Γ𝑛𝑚(𝑥)𝜙𝑛(𝑥)

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

Γ1=+1.566
Γ2=-0.868
Γ3=+0.509
Γ4=-0.364
Γ5=+0.283
Γ6=-0.231

Above, the modal mass decomposition 𝑟𝑛 = Γ𝑛𝑚𝜙𝑛,for the first six modes of a
uniform cantilever, in abscissa 𝑥/𝐿.
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EQ example, cantilever

For a cantilever, it is possible to derive explicitly some response quantities,

𝑉(𝑥), 𝑉B, 𝑀(𝑥), 𝑀B,

that is, the shear force and the base shear force, the bending moment and the base bending moment.

𝑉st
𝑛 (𝑥) =

𝐿

𝑥
𝑟𝑛(𝑠) d𝑠, 𝑉st

B =
𝐿

0
𝑟𝑛(𝑠) d𝑠 = Γ𝑛ℒ𝑛 = 𝑀⋆

𝑛,

𝑀st
𝑛 (𝑥) =

𝐿

𝑥
𝑟𝑛(𝑠)(𝑠 − 𝑥) d𝑠, 𝑀st

B =
𝐿

0
𝑠𝑟𝑛(𝑠) d𝑠 = 𝑀⋆

𝑛ℎ⋆𝑛.

𝑀⋆
𝑛 is the participating modal mass and expresses the participation of the different modes to the base

shear, it is ∑𝑀⋆
𝑛 = ∫𝐿0 𝑚(𝑥) d𝑥.

𝑀⋆
𝑛ℎ⋆𝑛 expresses the modal participation to base moment, ℎ⋆𝑛 is the height where the participating

modal mass𝑀⋆
𝑛 must be placed so that its effects on the base are the same of the static modal forces

effects, or𝑀⋆
𝑛 is the resultant of s.m.f. and ℎ⋆𝑛 is the position of this resultant.
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EQ example, cantilever, 2

Starting with the definition of total mass and operating a chain of substitutions,

𝑀TOT =
𝐿

0
𝑚(𝑥) d𝑥 =

𝐿

0
𝑟𝑛(𝑥) d𝑥

=
𝐿

0
Γ𝑛𝑚(𝑥)𝜙𝑛(𝑥) d𝑥 = Γ𝑛

𝐿

0
𝑚(𝑥)𝜙𝑛(𝑥) d𝑥

= Γ𝑛ℒ𝑛 = 𝑀⋆
𝑛,

we have demonstrated that the sum of the participating modal mass is equal to the
total mass.
The demonstration that𝑀B,TOT = ∑𝑀⋆

𝑛ℎ⋆𝑛 is similar and is left as an exercise.
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EQ example, cantilever, 3

For the first 8 modes of a uniform cantilever,

n ℒ𝑛 𝑚𝑛 Γ𝑛 𝑉𝐵,𝑛 = ℒ𝑛Γ𝑛 ℎ𝑛 𝑀𝐵,𝑛

1 0.391496 0.250 1.565984 0.613076 0.726477 0.445386
2 ‐0.216968 0.250 ‐0.867872 0.188300 0.209171 0.039387
3 0.127213 0.250 0.508851 0.064732 0.127410 0.008248
4 ‐0.090949 0.250 ‐0.363796 0.033087 0.090943 0.003009
5 0.070735 0.250 0.282942 0.020014 0.070736 0.001416
6 ‐0.057875 0.250 ‐0.231498 0.013398 0.057875 0.000775
7 0.048971 0.250 0.195883 0.009593 0.048971 0.000470
8 ‐0.042441 0.250 ‐0.169765 0.007205 0.042442 0.000306

The convergence for𝑀B is faster than the convergence for 𝑉B because 𝑉𝐵 is proportional to a higher
derivative of displacements.
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